scholarly journals Enhanced intraperitoneal delivery of charged, aerosolized curcumin nanoparticles by electrostatic precipitation

Nanomedicine ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 109-120
Author(s):  
Arianna Castagna ◽  
Alexandra J Zander ◽  
Iaroslaw Sautkin ◽  
Marc Schneider ◽  
Ranjita Shegokar ◽  
...  

Aims: To investigate the potential of curcumin-loaded polylactic-co-glycolic acid nanoparticles (CUR-PLGA-NPs), alone and with electrostatic precipitation, for improving tissue uptake during pressurized intraperitoneal aerosol chemotherapy (PIPAC). Methods: Positively and negatively charged CUR-PLGA-NPs were delivered as PIPAC into inverted bovine urinary bladders ex vivo. The experiment was repeated with the additional use of electrostatic precipitation pressurized intraperitoneal aerosol chemotherapy (electrostatic PIPAC). Results: Positively charged CUR-PLGA-NPs increased depth of tissue penetration by 81.5% and tissue concentration by 80%. Electrostatic precipitation further improved the uptake of positively charged CUR-PLGA-NPs by 41.8%. Conclusion: The combination of positive charge and electrostatic precipitation have significant potential to improve tissue uptake of nanoparticles during intraperitoneal chemotherapy.

Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 282
Author(s):  
Zahra Davoudi ◽  
Nathan Peroutka-Bigus ◽  
Bryan Bellaire ◽  
Albert Jergens ◽  
Michael Wannemuehler ◽  
...  

Intestinal organoids can be used as an ex vivo epithelial model to study different drug delivery effects on epithelial cells’ luminal surface. In this study, the impact of surface charge on the delivery of 5-ASA loaded PLGA nanoparticles into the lumen of organoids was investigated. Alginate and chitosan were used to coat the nanoparticles and provide negative and positive charges on the particles, respectively. The organoid growth and viability were not affected by the presence of either alginate- or chitosan-coated nanoparticles. It was shown that nanoparticles could be transported from the serosal side of the organoids to the lumen as the dye gradually accumulated in the lumen by day 2–3 after adding the nanoparticles to the Matrigel. By day 5, the dye was eliminated from the lumen of the organoids. It was concluded that the positively charged nanoparticles were more readily transported across the epithelium into the lumen. It may be attributed to the affinity of epithelial cells to the positive charge. Thus, the organoid can be utilized as an appropriate model to mimic the functions of the intestinal epithelium and can be used as a model to evaluate the benefits of nanoparticle-based drug delivery.


Author(s):  
Massis Krekorian ◽  
Gerwin G. W. Sandker ◽  
Kimberley R. G. Cortenbach ◽  
Oya Tagit ◽  
N. Koen van Riessen ◽  
...  

1996 ◽  
Vol 271 (3) ◽  
pp. C736-C741 ◽  
Author(s):  
W. Xu ◽  
C. Gatto ◽  
M. A. Milanick

Exchange inhibitory peptide (XIP; RRLLFYKYVYKRYRAGKQRG) is the shortest peptide that inhibits the plasma membrane Ca pump at high Ca (A. Enyedi, T. Vorherr, P. James, D. J. McCormick, A. G. Filoteo, E. Carafoli, and J. T. Penniston, J. Biol. Chem. 264: 12313-12321, 1989). Sulfosuccinimidyl acetate (SNA)-modified XIP does not inhibit the Ca pump; SNA neutralizes the positive charge on Lys at positions 7, 11, and 17. Peptide 2CK-XIP (RRLLFYRYVYRCYCAGRQKG) inhibits the pump, but the iodoacetamido-modified peptide does not inhibit. Three peptide analogues, in which 7, 11, and 17 were Ala, Cys, or Lys, inhibited about as well as XIP. SNA modification of these analogues (each with 1 Lys) did not inhibit. SNA modification of 2CK-XIP results in a peptide that does not inhibit; thus position 19 is important. Our results suggest that it is critical that position 19 be positively charged, that positions 7, 11, and 17 are important contact points between XIP and the Ca pump (with at least one positively charged), and that, whereas it is not essential that residues 12 and 14 be positive, they cannot be negative.


2016 ◽  
Vol 7 (8) ◽  
pp. 910-914 ◽  
Author(s):  
Veria Khosrawipour ◽  
Urs Giger-Pabst ◽  
Tanja Khosrawipour ◽  
Yousef Hedayat Pour ◽  
David Diaz-Carballo ◽  
...  

2019 ◽  
Author(s):  
Markus W. Löffler ◽  
Nick Seyfried ◽  
Markus Burkard ◽  
Benedikt Oswald ◽  
Alexander Tolios ◽  
...  

AbstractCytotoxicity of oxaliplatin-containing solutions (OCS), sampled during patient treatment with hyperthermic intraperitoneal chemotherapy (HIPEC), was assessed by well-established continuous impedance-based real-time cell analysis (RTCA) ex vivo. HIPEC treatment was replicated by exposing OAW-42 cancer cells to OCS for 30 or 60 minutes at 42 °C. In contrast to previous observations with continuous exposure, where cytotoxicity was proven, identical OCS obtained during HIPEC did not induce cell death reproducibly and showed strongly attenuated effects after only 30 minutes of application. Based on these unexpected findings, spike-ins of oxaliplatin (OX) into peritoneal dialysis solution (PDS) or dextrose 5 % in water (D5W) were used to replicate HIPEC conditions, as used in either our own protocols or the recently presented randomized controlled PRODIGE 7 trial, where OX HIPEC for 30 minutes failed to produce survival benefits in colorectal carcinoma patients. With OX-spiked into D5W or PDS at identical concentrations as used for PRODIGE 7 or conforming with own HIPEC protocols, we did not observe the expectable cytotoxic effects in RTCA, after replicating OX HIPEC for 30 minutes. These results were corroborated for both solvents at relevant drug concentrations by classical end-point assays for cytotoxicity in two cancer cell lines. Further results suggest that penetration depth, drug dosage, exposure time and drug solvents may constitute critical factors for HIPEC effectiveness. Accordingly, we witnessed substantial cell shrinkage with both PDS and D5W, potentially contributing to reduced drug effects. Based on these results, intensified pharmacological research seems warranted to establish effective HIPEC protocols.Key PointsOxaliplatin (OX)-containing solutions obtained during patient treatment with Hyperthermic intraperitoneal chemotherapy (HIPEC) unexpectedly showed low cytotoxicity in an impedance-based ex vivo cytotoxicity cell assay.OX cytotoxicity under HIPEC conditions could be enhanced by extending drug exposure to one hour by an impedance-based ex vivo cytotoxicity cell assay.HIPEC failed to show survival benefits in the randomized controlled PRODIGE 7 trial and was questioned in the aftermath.Clinically relevant OX concentrations applied in conjunction with hyperthermia (42 °C) for 30 minutes, as used either at our own medical center or according to the PRODIGE 7 trial, proved predominantly ineffective, when used according to HIPEC routines in an impedance-based in vitro cytotoxicity cell assay.Respective findings were corroborated in two different cell lines and by two established end-point assays, showing that 50 % cell death could not be reached by the same HIPEC treatment with OX, in contrast to continuous drug exposure.As potentially relevant factor, the thickness of the exposed cell layer was identified, requiring at least ~100 µm penetration depth for our model to indicate effectiveness.Additionally, we show relevant cell shrinkage by two drug diluents used either at our own medical center or according to the PRODIGE 7 trial, potentially associated with fluid shifts out of the cell and impaired drug effects.Our own as well as recent findings by Ubink et al. (Br J Surg. 2019. doi: 10.1002/bjs.11206) support the notion that lacking effectiveness of OX HIPEC may explain the negative PRODIGE 7 trial results.


2007 ◽  
Vol 293 (3) ◽  
pp. C906-C914 ◽  
Author(s):  
Matthew R. Skerritt ◽  
Donald L. Campbell

The molecular and biophysical mechanisms by which voltage-sensitive K+ (Kv)4 channels inactivate and recover from inactivation are presently unresolved. There is a general consensus, however, that Shaker-like N- and P/C-type mechanisms are likely not involved. Kv4 channels also display prominent inactivation from preactivated closed states [closed-state inactivation (CSI)], a process that appears to be absent in Shaker channels. As in Shaker channels, voltage sensitivity in Kv4 channels is thought to be conferred by positively charged residues localized to the fourth transmembrane segment (S4) of the voltage-sensing domain. To investigate the role of S4 positive charge in Kv4.3 gating transitions, we analyzed the effects of charge elimination at each positively charged arginine (R) residue by mutation to the uncharged residue alanine (A). We first demonstrated that R290A, R293A, R296A, and R302A mutants each alter basic activation characteristics consistent with positive charge removal. We then found strong evidence that recovery from inactivation is coupled to deactivation, showed that the precise location of the arginine residues within S4 plays an important role in the degree of development of CSI and recovery from CSI, and demonstrated that the development of CSI can be sequentially uncoupled from activation by R296A, specifically. Taken together, these results extend our current understanding of Kv4.3 gating transitions.


1987 ◽  
Author(s):  
J Rosing ◽  
H Speijer ◽  
J W P Govers-Riemslag ◽  
R F A Zwaal

It is generally thought that procoagulant phospholipid surfaces that promote the activation of vitamin K-dependent coagulation factors should have a net negative charge in order to promote calcium-dependent binding of the enzymes (FVIIa, FIXa and FXa) and substrates (prothrombin and FX) of the coagulation factor-activating complexes. Two models have been proposed to explain calcium-mediated association of vitamin K-dependent proteins with phospholipid: a) an electrostatic model, in which a positively-charged protein-calcium complex is attracted by a negatively-charged phospholipid surface and b) a chelation model in which a coordination complex is formed between calcium ions, γ-carboxyglutamic acids of the proteins and negatively-charged membrane phospholipids. To study the effect of the electrostatic potential of phospholipid vesicles on their activity in the pro-thrombinase complex the net charge of vesicles was varied by introduction of varying amounts of positively-charged stearylamine in the membrane surface. Introduction of 0-15 mole% stearylamine in phospholipid vesicles that contained 5 mole% phosphatidylseri-ne (PS) hardly affected their activity in prothrombin activation. Electrophoretic analysis showed that vesicles with > 5 mole% stearylamine had a net positive charge. The procoagulant activity of vesicles that contained phosphatidic acid, phosphatidylglyce-rol, phosphatidylinositol or phosphatidyl-glactate (PLac) as acidic phospholipid was much more effected by incorporation of stearylamine. Amounts of stearylamine that compensated the negative charge of acidic phospholipid caused considerable inhibition of the activity of the latter vesicles in prothrombin activation. The comparison of vesicles containing PS and PLac as acidic phospholipid is of special interest. PS and PLac only differ by the presence of NH+ 3-group in the serine moiety of PS. Thus, in spite of the fact that vesicles with PLac are more negatively charged than vesicles with PS, they are less procoagulant. Our results show that a) although procoagulant membranes have to contain acidic phospholipids there is no requirement for a net negative charge, b) the amino group of phosphatidylserine has an important function in the interaction of procoagulant membranes with vitamin K-dependent proteins and c) the chelation model can satisfactorily explain calcium-mediated lipid-protein association.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3818
Author(s):  
Günther A. Rezniczek ◽  
Jonathan Buggisch ◽  
Julien Sobilo ◽  
Alexandre Launay ◽  
Stéphanie Lerondel ◽  
...  

Intraperitoneal chemotherapy (IPC) is a locoregional treatment option in patients with peritoneal metastases (PM). Here, we present an ovarian cancer (OC)-derived PM mouse model for the study of different forms of IPC. Xenograft cell proliferation (luciferase-transfected OVCAR3 and SKOV3 clones) and growth kinetics were assessed using PET scan, bioluminescence imaging (BLI), and histological tumor analysis. Liquid IPC was achieved by intraperitoneal injection with/without capnoperitoneum (6–7 mmHg). Pressurized intraperitoneal aerosol chemotherapy (PIPAC) was mimicked using an intratracheal drug aerosol administration system (micro-nozzle), which, as demonstrated by ex vivo granulometric analysis using laser diffraction spectrometry, produced a polydisperse, bimodal aerosol with a volume-weighted median diameter of (26.49 ± 2.76) µm. Distribution of Tc-99m-labeled doxorubicin in mice was characterized using SPECT and was dependent on the delivery mode and most homogeneous when the micro-nozzle was used. A total of 2 mg doxorubicin per kg body weight was determined to be the optimally effective and tolerable dose to achieve at least 50% tumor reduction. Repeated PIPAC (four times at seven-day-intervals) with doxorubicin in SKOV3-luc tumor-bearing mice resulted in halted tumor proliferation and tumor load reduced after the second round of PIPAC versus controls and the number of tumor nodules was significantly reduced (27.7 ± 9.5 vs. 57.3 ± 9.5; p = 0.0003). Thus, we established the first mouse model of OC PM for the study of IPC using a human xenograft with SKOV3 cells and an experimental IPC setup with a miniaturized nozzle. Repeated IPC was feasible and demonstrated time-dependent anti-tumor activity.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Veria Khosrawipour ◽  
Sören Reinhard ◽  
Alice Martino ◽  
Tanja Khosrawipour ◽  
Mohamed Arafkas ◽  
...  

Background. High‐intensity ultrasound (HIUS) has been studied for the past two decades as a new therapeutic option for solid tumor direct treatment and a method for better chemotherapy delivery and perfusion. This treatment approach has not been tested to our knowledge in peritoneal metastatic therapy, where limited tissue penetration of intraperitoneal chemotherapy has been a main problem. Both liquid instillations and pressurized aerosols are affected by this limitation. This study was performed to evaluate whether HIUS improves chemotherapy penetration rates. Methods. High-intensity ultrasound (HIUS) was applied for 0, 5, 30, 60, 120, and 300 seconds on the peritoneal tissue samples from fresh postmortem swine. Samples were then treated with doxorubicin via pressurized intraperitoneal aerosol chemotherapy (PIPAC) under 12 mmHg and 37°C temperature. Tissue penetration of doxorubicin was measured using fluorescence microscopy on frozen thin sections. Results. Macroscopic structural changes, identified by swelling of the superficial layer of the peritoneal surface, were observed after 120 seconds of HIUS. Maximum doxorubicin penetration was significantly higher in peritoneum treated with HIUS for 300 seconds, with a depth of 962.88 ± 161.4 μm (p < 0.05). Samples without HIUS had a penetration depth of 252.25 ± 60.41. Tissue penetration was significantly increased with longer HIUS duration, with up to 3.8-fold increased penetration after 300 sec of HIUS treatment. Conclusion. Our data indicate that HIUS may be used as a method to prepare the peritoneal tissue for intraperitoneal chemotherapy. Higher tissue penetration rates can be achieved without increasing chemotherapy concentrations and preventing structural damage to tissue using short time intervals. More studies need to be performed to analyze the effect of HIUS in combination with intraperitoneal chemotherapy.


2014 ◽  
Vol 70 (a1) ◽  
pp. C969-C969
Author(s):  
Peter Luger ◽  
Stefan Mebs ◽  
Manuela Weber ◽  
Birger Dittrich

The average age of people is increasing continuously thanks to the progress in the medicinal sciences and further social advances. As a consequence, however, diseases which affect people more likely at a higher age also increase. In this course Alzheimer's disease (AD) and related brain disorders distribute rapidly and have to be taken more serious. One of the most frequently applied drugs against AD is donepezil®. Its function is a reversible inhibition of acetylcholinesterase (AChE), thereby reducing the deficit of acetylcholine associated with the occurrence of AD. As one result from the charge density (CD) of the small-molecule structure containing the donepezilium cation comparable electronic interactions were identified as in the macromolecular TcAChE-donepezil complex which were made visible by electrostatic potential and Hirshfeld surfaces.[1] Two newer developments of Alzheimer agents are bexarotene and methylene blue. For the first one a therapeutic effect on AD in a mouse model was recently reported. From a comparative CD study on bexarotene and its disila analogue differences in the electrostatic potentials were identified, while the spherical structures showed no significant differences. The second one, methylene blue, targets the abnormal tangle type tau protein aggregation inside the nerve cells in the brain and stops its spread. The molecule is positively charged with various counterions. From the CD an answer to the not yet understood question is expected whether the formal positive charge is localized or delocalized.


Sign in / Sign up

Export Citation Format

Share Document