Gastroprotective effects of Nelumbinis Rhizomatis Nodus-derived carbon dots on ethanol-induced gastric ulcers in rats

Nanomedicine ◽  
2021 ◽  
Author(s):  
Juan Luo ◽  
Jie Hu ◽  
Meiling Zhang ◽  
Yue Zhang ◽  
Jiashu Wu ◽  
...  

Aim: To evaluate the gastroprotective effects of Nelumbinis Rhizomatis Nodus carbon dots (NRN-CDs) on ethanol-induced gastric ulcers in rats. Materials & methods: NRN-CDs synthesized and characterized by transmission electron microscopy, ultraviolet, fluorescence and Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction and zeta potential analyzer. Their gastroprotective effects toward ethanol-induced gastric ulcers were evaluated in male Sprague–Dawley rats. Results: NRN-CDs showed an average diameter of 2.33 ± 0.42 nm and a lattice spacing of 0.29 nm. Pretreatment with NRN-CDs significantly decreased the ulcer index and attenuated the severity of gastric mucosal damage, indicating that NRN-CDs exerted potent gastric protective effect. Moreover, the gastroprotection effect was related to the regulation of oxidative stress and inflammatory factors. Conclusion: NRN-CDs could be developed as a potential drug for the treatment of gastric ulcers.

2020 ◽  
Author(s):  
Juan Luo ◽  
Jie Hu ◽  
Meiling Zhang ◽  
Yue Zhang ◽  
Jiashu Wu ◽  
...  

Abstract BackgroundGastric ulcers is a common gastrointestinal digestive system disease. Considering the frequency of human gastric ulcers, the side effects and cost of some existing synthetic drugs, the use of natural products is an important choice for many people. The aim of present study was to explore gastroprotective effects of nelumbinis rhizomatis nodus carbonisata carbon dots (NRNC-CDs) on ethanol-induced gastric ulcers in rats.MethodsThe NRNC-CDs were synthesized via high temperature calcinations treatment at 350 ℃ for 1 h were characterized by various spectroscopic and electron microscopy techniques for their structural, morphological, and optical properties. In vitro cytotoxicity of CDs for the human gastric epithelial cells line (GES-1 cells) was assessed by the CCK-8 assay. Furthermore, the study evaluated gastroprotective effects of NRNC-CDs on ethanol-induced gastric ulcers in rats, followed by a preliminary study on the possible mechanisms of gastroprotection.ResultesNRNC-CDs with a quantum yield of 1.38% have an average diameter of 2.89±0.82nm and the lattice spacing of 0.29 nm , and exerted low toxicity to GES-1 cells by CCK-8 test. In vivo experiments showed that NRNC-CDs remarkably reduced gastric mucosal damage and significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione peroxidase (GSH-Px). In addition, NRNC-CDs also significantly inhibited tumor necrosis factor-alpha (TNF-a) and pro-inflammatory interleukin-6 (IL-6) level in gastric tissues. Histological findings demonstrated that NRNC-CDs exhibited a protective effect against tissue alterations in response to the ethanol-induced ulcer.ConclussionThe potent gastroprotective effect of NRNC-CDs were thus attributed to its anti-inflammatory and antioxidant effects. This discovery provides guidance for further research the effect of CDs in gastrointestinal digestive diseases.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1512
Author(s):  
Yuhan Liu ◽  
Meiling Zhang ◽  
Jinjun Cheng ◽  
Yue Zhang ◽  
Hui Kong ◽  
...  

Glycyrrhizae Radix et Rhizoma (GRR) is one of the commonly used traditional Chinese medicines in clinical practice, which has been applied to treat digestive system diseases for hundreds of years. GRR is preferred for anti-gastric ulcer, however, the main active compounds are still unknown. In this study, GRR was used as precursor to synthesize carbon dots (CDs) by a environment-friendly one-step pyrolysis process. GRR-CDs were characterized by using transmission electron microscopy, high-resolution TEM, fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. In addition, cellular toxicity of GRR-CDs was studied by using CCK-8 in RAW264.7 cells, and the anti-gastric ulcer activity was evaluated and confirmed using mice model of acute alcoholic gastric ulcer. The experiment confirmed that GRR-CDs were the spherical structure with a large number of active groups on the surface and their particle size ranged from 2 to 10 nm. GRR-CDs had no toxicity to RAW264.7 cells at concentration of 19.5 to 5000 μg/mL and could reduce the oxidative damage of gastric mucosa and tissues caused by alcohol, as demonstrated by restoring expression of malondialdehyde, superoxide dismutase and nitric oxide in serum and tissue of mice. The results indicated the explicit anti-ulcer activity of GRR-CDs, which provided a new insights for the research on effective material basis of GRR.


2020 ◽  
Vol 10 (11) ◽  
pp. 1777-1787
Author(s):  
Yadian Xie ◽  
Shanshan Wang ◽  
Ning Fu ◽  
Yan Yang ◽  
Xingliang Liu ◽  
...  

Carbon dots (CDs) also nitrogen-doped CDs (N-CDs) were produced by green hydrothermal synthesis using Pea and ethanediamine as the carbon and nitrogen source, separately. Transmission electron microscopy (TEM) images displayed that the prepared CDs and N-CDs were well dispersed, had a spherical morphology. X-ray diffraction (XRD) figures of CDs and N-CDs presented a graphitic amorphous structure. Fourier transform infrared spectroscopy (FT-IR) verified that CDs and N-CDs carried many different hydrophilic groups (for example hydroxyl, carboxyl/carbonyl, amide, amino groups) on the surface, X-ray photoelectron spectroscopy (XPS) together verified this result. However, the optical properties and fluorescence quantum yield for N-CDs were obviously superior to those of CDs. Furthermore, the prepared N-CDs displayed outstanding advantages including low toxicity, satisfactory biocompatibility, and excellent chemical stability. More prominently, the prepared N-CDs could detect Hg2+ ions with high sensitivity and selectivity in both water samples and HeLa cells.


Author(s):  
S.F. Abdullah ◽  
S. Radiman ◽  
M.A. Abdul Hamid ◽  
N.B. Ibrahim

Tungsten (VI) oxide, WO3nanoparticles were synthesized by colloidal gas aphrons(CGAs) technique.The resultant WO3nanoparticleswere characterized by thermogravimetric-differential thermal analysis (TG-DTA) and X-Ray diffraction (XRD) measurements in order to determine the phase transitions, the crystallinity and the size of theWO3nanoparticles. As a comparison, transmission electron microscope (TEM) was used to investigate the size of the WO3nanoparticles. The result from XRD and DTA show that the formation of polymorphsWO3nanoparticles have the following sequence: orthorhombic (b-WO3)®monoclinic (g-WO3) ®triclinic (d-WO3) ®monoclinic (e-WO3) with respect to the calcination temperature of 400, 500, 600 and 700°C. No diffraction peaks were found in the X-Ray diffraction measurements for the sample heat treated at 300°C (as-prepared), suggesting that an amorphous structure was obtained at this temperature whereas the crystallinity had been obtained by the other samples of theWO3nanoparticles at the calcination temperatures of 400, 500, 600 and 700°C. It is also found that the X-Ray diffraction measurements produced an average diameter of (30 ±5), (50 ±5), (150 ±10) and (200 ±10) nm at calcination temperatures of 400, 500, 600 and 700°C respectively by using Debye-Scherrer formula. The TG curve revealed that the WO3nanoparticles is purely anhydrous since the weight loss is insignificant (0.3 –1.4) % from 30 until 600°C for the WO3nanoparticles calcined at 400°C. Finally, the composition and the purity of the WO3nanoparticleshave been examined by X-Ray photoelectron spectroscopy (XPS). Theresults indicate no significant changes to the composition and the purity of the WO3nanoparticle produced due to the temperature variations 


2017 ◽  
Vol 26 (1) ◽  
pp. 13-20 ◽  
Author(s):  
S.F. Abdullah ◽  
S. Radiman ◽  
M.A. Abdul Hamid ◽  
N.B, Ibrahim

Tungsten (VI) oxide, WO3 nanoparticles were synthesized by colloidal gas aphrons (CGAs) technique.  The resultant WO3 nanoparticles were characterized by thermogravimetric-differential thermal analysis (TG-DTA) and X-Ray diffraction (XRD) measurements in order to determine the phase transitions, the crystallinity and the size of the WO3 nanoparticles. As a comparison, transmission electron microscope (TEM) was used to investigate the size of the WO3 nanoparticles.  The result from XRD and DTA show that the formation of  polymorphs WO3 nanoparticles have the following sequence: orthorhombic (bWO3) ® monoclinic (g-WO3) ® triclinic (d-WO3) ® monoclinic (e-WO3) with respect to the calcination temperature of 400, 500, 600 and 700°C.  No diffraction  peaks were found in the X-Ray diffraction measurements for the sample heat treated at 300°C (as-prepared), suggesting that an amorphous structure was  obtained at this temperature whereas the crystallinity had been obtained by the other samples of the WO3 nanoparticles at the calcination temperatures of 400, 500, 600 and 700°C.  It is also found that the X-Ray diffraction measurements produced an average diameter of (30 ± 5), (50 ± 5), (150 ± 10) and (200 ± 10) nm at calcination temperatures of 400, 500, 600 and 700°C respectively by using  Debye-Scherrer formula.  The TG curve revealed that the WO3 nanoparticles is purely anhydrous since the weight loss is insignificant (0.3 – 1.4) % from 30 until  600°C for the WO3 nanoparticles calcined at 400°C.  Finally, the composition and the purity of the WO3 nanoparticles have been examined by X-Ray photoelectron spectroscopy (XPS).  The results indicate no significant changes to the composition and the purity of the WO3 nanoparticles produced due to the  temperature variations.                                             


2010 ◽  
Vol 5 (1) ◽  
pp. 155892501000500 ◽  
Author(s):  
Soo-Jin Park ◽  
Yong C. Kang ◽  
Ju Y. Park ◽  
Ed A. Evans ◽  
Rex D. Ramsier ◽  
...  

Titania nanofibers were successfully synthesized by sol-gel coating of electrospun polymer nanofibers followed by calcining to form either the pure anatase or rutile phases. Characterization of these materials was carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy techniques. The average diameter of these ceramic nanofibers was observed to be around 200 nm for both the rutile and anatase forms. The valence band structure and optical absorption thresholds differ, however, indicating that nanofibrous mats of titania can be selectively developed for different applications in catalysis and photochemistry.


2020 ◽  
Vol 194 ◽  
pp. 05064
Author(s):  
Tianjiao Hu ◽  
Junying Yu ◽  
Ye Zhang

As a new synthetic metal-free material, BCN has aroused great interests in the field of photocatalyst materials due to its lower cost as well as higher reliability and better sustainability. In this work, we prepared BCN nanofibers by electrospinning of precursor solution containing polyacrylonitrile and ammonia borane, and then pyrolyzed the polymer fibers in NH3. Infrared spectroscopy (FT-IR), Scanning emission microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to analyse the composition and structure of the samples. The results show that the BCN nanofibers have an average diameter of 50-100 nm and mainly compose of BN nanocrystals. C atoms are distributed at the BN grain boundary in terms of B-C and B-N bonds. The band gap of the fibers is between 2.1-2.7 eV and can be adjusted by changing the ratio of PAN and AB in the raw materials.


2000 ◽  
Vol 15 (2) ◽  
pp. 541-545 ◽  
Author(s):  
Junyan Zhang ◽  
Shengrong Yang ◽  
Qunji Xue

Ni(OH)2 nanoparticles modified with di-n-hexadecyldithiophosphate (DDP) were prepared by a chemical surface modification method. The structure of the nanocluster was investigated using infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, and 31P nuclear magnetic resonance spectroscopy. The thermal stability of DDP coating on the Ni(OH)2 nanoparticles was compared to that of pyridinium di-n-hexadecyldithiophosphate (PyDDP) using thermogravimetric analysis. It was found that coated Ni(OH)2 nanoparticles had an average diameter of about 5 nm. Surface modification with DDP prevented water adsorption and effectively improved the dispersive capacity and antioxidative stability of Ni(OH)2 nanoparticles. The thermal stability of DDP coatings on the surface of nano-Ni(OH)2 particles was higher than that of PyDDP coatings because of the chemical interaction between PyDDP and Ni(OH)2 during the coating process.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 310 ◽  
Author(s):  
Wenhao Qian ◽  
Tao Song ◽  
Mao Ye ◽  
Haiyan Zhang ◽  
Chun Feng ◽  
...  

A facile strategy to prepare GO-based nanocomposites with both gold nanoparticles (AuNPs) and ferrocene (Fc) moieties was developed. The surface of GO was modified with PFcMAss homopolymer by surface-initiated atom transfer radical polymerization of a new methacrylate monomer of 2-((2-(methacryloyloxy)ethyl)disulfanyl)ethyl ferrocene-carboxylate (FcMAss), consisting of disulfide as an anchoring group for stabilizing AuNPs and Fc group as an additional functionality. AuNPs with an average diameter of about 4.1 nm were formed in situ on the surface of PFcMAss-decorated GO (GO-PFcMAss) via Brust-Schiffrin method to give GO-PFcMAss-AuNPs multifunctional nanocomposites bearing GO, AuNPs and Fc groups. The obtained nanocomposites were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Since disulfide-containing polymers, rather than the commonly used thiol-containing compounds, were employed as ligands to stabilize AuNPs, much more stabilizing groups were attached onto the surface of GO, and thus more AuNPs were able to be introduced onto the surface of GO. Besides, polymeric chains on the surface of GO endowed GO-PFcMAss-AuNPs nanocomposites with excellent colloidal stability, and the usage of a disulfide group provides possibility to efficiently incorporate additional functionalities by easily modifying structure of disulfide-based monomer.


2009 ◽  
Vol 08 (03) ◽  
pp. 281-283 ◽  
Author(s):  
MASOUD SALAVATI-NIASARI ◽  
FATEMEH DAVAR

Mn3O4 nanocrystals have been prepared using [bis(2-hydroxyacetophenato)manganese(II)] as precursor. Transmission electron microscopy analysis demonstrated nanocrystals Mn3O4 with an average diameter of about 20 nm. The structural study by X-ray diffraction indicates that these nanocrystals have pure tetragonal phase. The phase pure samples were characterized using X-ray Photoelectron Spectroscopy for Mn 2p level. The values of binding energies are consistent with the relative values reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document