scholarly journals Extracellular vesicles as drug vectors for precise cancer treatment

Nanomedicine ◽  
2021 ◽  
Author(s):  
Xin-Hui Cao ◽  
Ming-Xing Liang ◽  
Yang Wu ◽  
Kai Yang ◽  
Jin-Hai Tang ◽  
...  

Extracellular vesicles (EVs) are nano-sized vesicle structures secreted from a variety of cells, which carry numerous biological macromolecules, participate in cell signal transduction and avoid immune system clearance. EVs have a plethora of specific signal recognition factors, and many studies have shown that they can play an important role in the precise treatment of tumors. This review aims to compile the applications of EVs as nanocarriers for antitumor drugs, gene drugs and other nanomaterials with anticancer capability. Additionally, we systematically summarize the preparation methodology and expound upon how to improve the drug loading and cancer-targeting capacity of EVs. We highlight that EV-based drug delivery has the potential to become the future of precise cancer treatment.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1151
Author(s):  
Lu Tang ◽  
Jing Li ◽  
Qingqing Zhao ◽  
Ting Pan ◽  
Hui Zhong ◽  
...  

The encapsulation of therapeutic agents into nano-based drug delivery system for cancer treatment has received considerable attention in recent years. Advancements in nanotechnology provide an opportunity for efficient delivery of anticancer drugs. The unique properties of nanoparticles not only allow cancer-specific drug delivery by inherent passive targeting phenomena and adopting active targeting strategies, but also improve the pharmacokinetics and bioavailability of the loaded drugs, leading to enhanced therapeutic efficacy and safety compared to conventional treatment modalities. Small molecule drugs are the most widely used anticancer agents at present, while biological macromolecules, such as therapeutic antibodies, peptides and genes, have gained increasing attention. Therefore, this review focuses on the recent achievements of novel nano-encapsulation in targeted drug delivery. A comprehensive introduction of intelligent delivery strategies based on various nanocarriers to encapsulate small molecule chemotherapeutic drugs and biological macromolecule drugs in cancer treatment will also be highlighted.


Author(s):  
Vijay Mishra ◽  
Pallavi Nayak ◽  
Manvendra Singh ◽  
Murtaza M. Tambuwala ◽  
Alaa A. Aljabali ◽  
...  

Background: Silver nanoparticles (AgNPs) are one of the most investigated nanostructures in recent years, which gives more challenging and promising qualities in different biomedical applications. The AgNPs synthesized by the green approach provide potential healthcare benefits over chemical approaches, including improvement of tissue restoration, drug delivery, diagnosis, environmentally friendly and a boon to cancer treatment. Objective: In the current scenario, the development of safe and effective drug delivery systems is the utmost concern of formulation development scientists as well as clinicians. Methods: Google, Web of Science, PubMed, portals have been searched for potentially relevant literature to get latest developments and updated information related to different aspects of green synthesized AgNPs along with their biomedical applications especially in the treatment of different types of cancers. Results: The present review highlights the latest published research regarding the different green approaches for the synthesis of AgNPs, their characterization techniques as well as various biomedical applications, particularly in cancer treatment. In this context, environment friendly AgNPs are proving themselves as better candidates in terms of size, drug loading and release efficiency, targeting efficiency, minimal drug-associated side effects, pharmacokinetic profiling, and biocompatibility issues. Conclusion: With continuous efforts by multidisciplinary team approaches, nanotechnology-based AgNPs will shed new light on diagnostics and therapeutics in various disease treatments. However, the toxicity issues of AgNPs needs the greatest attention as unanticipated toxic effects must be ruled out for their diversified applications.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Guangman Cui ◽  
Junrong Wu ◽  
Jiaying Lin ◽  
Wenjing Liu ◽  
Peixian Chen ◽  
...  

AbstractBreast cancer is the most common malignancy in women, and its incidence increases annually. Traditional therapies have several side effects, leading to the urgent need to explore new smart drug-delivery systems and find new therapeutic strategies. Graphene-based nanomaterials (GBNs) are potential drug carriers due to their target selectivity, easy functionalization, chemosensitization and high drug-loading capacity. Previous studies have revealed that GBNs play an important role in fighting breast cancer. Here, we have summarized the superior properties of GBNs and modifications to shape GBNs for improved function. Then, we focus on the applications of GBNs in breast cancer treatment, including drug delivery, gene therapy, phototherapy, and magnetothermal therapy (MTT), and as a platform to combine multiple therapies. Their advantages in enhancing therapeutic effects, reducing the toxicity of chemotherapeutic drugs, overcoming multidrug resistance (MDR) and inhibiting tumor metastasis are highlighted. This review aims to help evaluate GBNs as therapeutic strategies and provide additional novel ideas for their application in breast cancer therapy.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4946
Author(s):  
Anna Florczak ◽  
Inga Grzechowiak ◽  
Tomasz Deptuch ◽  
Kamil Kucharczyk ◽  
Alicja Kaminska ◽  
...  

Although progress is observed in cancer treatment, this disease continues to be the second leading cause of death worldwide. The current understanding of cancer indicates that treating cancer should not be limited to killing cancer cells alone, but that the target is the complex tumor microenvironment (TME). The application of nanoparticle-based drug delivery systems (DDS) can not only target cancer cells and TME, but also simultaneously resolve the severe side effects of various cancer treatment approaches, leading to more effective, precise, and less invasive therapy. Nanoparticles based on proteins derived from silkworms’ cocoons (like silk fibroin and sericins) and silk proteins from spiders (spidroins) are intensively explored not only in the oncology field. This natural-derived material offer biocompatibility, biodegradability, and simplicity of preparation methods. The protein-based material can be tailored for size, stability, drug loading/release kinetics, and functionalized with targeting ligands. This review summarizes the current status of drug delivery systems’ development based on proteins derived from silk fibroin, sericins, and spidroins, which application is focused on systemic cancer treatment. The nanoparticles that deliver chemotherapeutics, nucleic acid-based therapeutics, natural-derived agents, therapeutic proteins or peptides, inorganic compounds, as well as photosensitive molecules, are introduced.


2020 ◽  
Vol 17 ◽  
Author(s):  
Ozge Esim ◽  
Canan Hascicek

: Currently, despite many active compounds have been introduced to the treatment, cancer remains one of the most vital causes of mortality and reduced quality of life. Conventional cancer treatments may have undesirable consequences due to the continuously differentiating, dynamic and heterogeneous nature of cancer. Recent advances in the field of cancer treatment have promoted the development of several novel nanoformulations. Among them, the lipid coated nanosized drug delivery systems have gained an increasing attention by the researchers in this field owing to the attractive properties such as high stability and biocompatibility, prolonged circulation time, high drug loading capacity and superior in vivo efficacy. They possess the advantages of both the liposomes and polymeric nanoparticles which makes them a chosen one in the field of drug delivery and targeting. Core-shell type lipid-coated nanoparticle systems, which provide the most prominent advantages of both liposomes such as biocompatibility and polymeric/inorganic nanoparticles such as mechanic properties, offer a new approach to cancer treatment. This review discusses design and production procedures used to prepare lipid-coated nanoparticle drug delivery systems, their advantages and multifunctional role in cancer therapy and diagnosis, as well as the applications they have been used in.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Junfeng Huang ◽  
Zhourui Xu ◽  
Yihang jiang ◽  
Wing-cheung Law ◽  
Biqin Dong ◽  
...  

AbstractChemo-photothermal therapy based on nanoparticles has emerged as a promising strategy for cancer treatment. However, its therapeutic efficacy and application potential are largely subjected to the uncontrollability and biotoxicity of functional nanoplatforms. Herein, a novel biocompatible and biodegradable metal organic framework (MOF), which was constructed by growing crystalline zeolitic imidazolate framework-8 on gold nanoroad (Au@ZIF-8), was designed and fabricated for efficient drug loading and controlled release. Owing to the large surface area and guest-matching pore size of ZIF-8, doxorubicin (DOX) was successfully loaded into the Au@ZIF-8 with a high drug loading efficiency of ~ 37%. Under NIR light or weakly acidic environment, the ZIF-8 layer was quickly degraded, which resulted in an on-demand drug release in tumour site. More importantly, under the irradiation of near infrared (NIR) laser, highly efficient cancer treatment was achieved in both in vitro cell experiment and in vivo tumour-bearing nude mice experiment due to the synergistic effect of photothermal (PTT) therapy and chemotherapy. In addition, the in vivo study revealed the good biocompatibility of Au@ZIF-8. This work robustly suggested that Au@ZIF-8 could be further explored as a drug delivery system for chemo-photothermal synergistic therapy.


2020 ◽  
Vol 19 (05) ◽  
pp. 2050002
Author(s):  
Nasrin Faramarzi ◽  
Javad Mohammadnejad ◽  
Hanieh Jafary ◽  
Asghar Narmani ◽  
Mojtaba Koosha ◽  
...  

Recently, using gelatin nanoparticles as a biocompatible carrier in drug delivery systems is growing up. Drug delivery is one of the most common applications of nanoparticles in cancer treatment in order to optimize the drug efficiency. In this study, gelatin nanoparticles were firstly synthesized and loaded with tamoxifen that subsequently characterized by SEM, TGA and FT-IR analyses. The approximate drug loading efficiency was calculated about 17.43% for tamoxifen-loaded gelatin (TG). Then, the effect of TG on apoptosis induction and cytotoxicity of MCF-7 cell line was evaluated and compared with flow cytometry and MTT assay. The MTT results showed that tamoxifen and TG nanoparticles could inhibit the proliferation of MCF-7 cells in a dose-responsive manner, with an IC[Formula: see text] of IC[Formula: see text] of 200 [Formula: see text]g/mL and 50 [Formula: see text]g/mL after 24[Formula: see text]h and 48[Formula: see text]h, respectively. Moreover, from flow cytometric results, it can be suggested that TG nanoparticles are more potent in inducing apoptosis and cell death through programmed cell death. Actually, TG nanoparticles primarily increased the early apoptotic cells during the 24-h incubation period Our results revealed that tamoxifen-loaded gelatin nanoparticles are more potent than tamoxifen alone. These findings support the use of tamoxifen-loaded gelatin nanoparticles in target-specific therapy for cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document