scholarly journals ENERGY LOSS AND WEAR IN SPHERICAL OBLIQUE ELASTIC IMPACTS

2019 ◽  
Vol 17 (1) ◽  
pp. 75 ◽  
Author(s):  
Emanuel Willert

Percussive and erosive wear by repetitive impacting of solid particles damages surfaces even at low impact velocities. As the impact wear is often directly related to the energy loss during the collision and therefore to the coefficients of normal and tangential restitution, in the present study the oblique low-velocity impact of a rigid sphere onto an elastic half-space is analyzed based on the known respective contact-impact solution and with regard to the energy loss during the impact. Simple analytic expressions are derived for the total impact wear volume. It is found that the portion of kinetic energy lost in frictional dissipation has a well-located maximum for configurations with weak forward pre-spin. The distribution of frictional dissipation over the contact area has a complex dependence on the impact parameters. For pronounced local slip (e.g. due to a small coefficient of friction) the dissipation accumulated over the collision is localized in the center of impact whereas for dominance of sticking, most energy is lost away from the center.

Author(s):  
V. S. Sooraj ◽  
V. Radhakrishnan

Finishing of surfaces using free abrasive impingement is one of the constructive applications of erosive wear, well suited for complex shaped engineering components with difficult-to-access surfaces. Low velocity impact of abrasives in a fluidized bed is reported as a promising choice to impart fine finish on the target surface. An improved methodology to control the erosion and to achieve ultra fine finish through elastic impact of abrasives, using a carrier type-fluidized abrasive finishing, is discussed in this paper. Using the basic concepts of impact theory and contact mechanics, a revised mathematical model to express the depth of erosion as a function of material properties of target and erodent is proposed. Modification in erodent abrasive to introduce an elastic nature to the impact is described in detail using the theoretical model. This is substantiated through a particle-dropping experimental study. The effect of multiple impacts in a practical situation is also discussed through a detailed experimental study, clearly demonstrating the concepts of elastic impact erosion for surface finishing.


2021 ◽  
pp. 152808372110154
Author(s):  
Ziyu Zhao ◽  
Tianming Liu ◽  
Pibo Ma

In this paper, biaxial warp-knitted fabrics were produced with different high tenacity polyester linear density and inserted yarns density. The low-velocity impact property of flexible composites made of polyurethane as matrix and biaxial warp-knitted fabric as reinforcement has been investigated. The effect of impactor shape and initial impact energy on the impact response of flexible composite is tested. The results show that the initial impact energy have minor effect on the impact response of the biaxial warp-knitted flexible composites. The impact resistance of flexible composite specimen increases with the increase of high tenacity polyester linear density and inserted yarns density. The damage morphology of flexible composite materials is completely different under different impactor shapes. The findings have theoretical and practical significance for the applications of biaxial warp-knitted flexible composite.


Author(s):  
Jianxun Du ◽  
Peng Hao ◽  
Mabao Liu ◽  
Rui Xue ◽  
Lin’an Li

Because of the advantages of light weight, small size, and good maneuverability, the bio-inspired micro aerial vehicle has a wide range of application prospects and development potential in military and civil areas, and has become one of the research hotspots in the future aviation field. The beetle’s elytra possess high strength and provide the protection of the abdomen while being functional to guarantee its flight performance. In this study, the internal microstructure of beetle’s elytra was observed by scanning electron microscope (SEM), and a variety of bionic thin-walled structures were proposed and modelled. The energy absorption characteristics and protective performance of different configurations of thin-walled structures with hollow columns under impact loading was analyzed by finite element method. The parameter study was carried out to show the influence of the velocity of impactor, the impact angle of the impactor and the wall thickness of honeycomb structure. This study provides an important inspiration for the design of the protective structure of the micro aerial vehicle.


2012 ◽  
Vol 445 ◽  
pp. 959-964
Author(s):  
Z. Khan ◽  
Necar Merah ◽  
A. Bazoune ◽  
S. Furquan

Low velocity drop weight impact testing of CPVC pipes was conducted on 160 mm long pipe sections obtained from 4-inch (100 mm) diameter schedule 80 pipes. Impact test were carried out for the base (as received) pipes and after their exposure to out door natural weathering conditions in Dhahran, Saudi Arabia. The results of the impact testing on the natural (outdoor exposure) broadly suggest that the natural outdoor exposures produce no change in the impact resistance of CPVC pipe material for the impact events carrying low incident energies of 10 and 20J. At the impact energies of 35 and 50J the natural outdoor exposures appear to cause appreciable degradation in the impact resistance of the CPVC pipe material. This degradation is noted only for the longer exposure periods of 12 and 18 months.


2021 ◽  
Author(s):  
Subal Sharma ◽  
Vinay Dayal

Abstract Coda waves have been shown to be sensitive to lab-controlled defects such as very small holes in fibrous composite material. In the real world, damages are subtler and more irregular. The main objective of this work is to investigate coda wave capability to detect low-velocity impact damages. The emphasis is to detect the presence of barely visible impact damages using ultrasonic waves. Detection of incipient damage state is important as it will grow over the life of the structure. Differential features, previously used in similar work, have been utilized to detect realistic impact damages on carbon fiber composites. Quasi-isotropic composite laminates were subjected to low-velocity impact energy ranging from 2J to 4.5J. Two differential features reported could be used detect the presence of damage. It is also observed that ply orientation can be a deterministic factor for indicating damages. The size and shape of the impact damage has been characterized using ultrasonic C-scans. Results indicate that coda waves can be used for the detection of damage due to low-velocity impact.


1999 ◽  
Author(s):  
Uday K. Vaidya ◽  
Mohan V. Kamath ◽  
Mahesh V. Hosur ◽  
Anwarul Haque ◽  
Shaik Jeelani

Abstract In the current work, sandwich composite structures with innovative constructions referred to as Z-pins, or truss core pins are investigated, in conjunction with traditional honeycomb and foam core sandwich constructions, such that they exhibit enhanced transverse stiffness, high damage resistance and furthermore, damage tolerance to impact. While the investigations pertaining to low velocity impact have appeared recently in Vaidya et al. 1999, the current paper deals with compression-after-impact studies conducted to evaluate the residual properties of sandwich composites “with” and “without” reinforced foam cores. The resulting sandwich composites have been investigated for their low velocity (< 5 m/sec) impact loading response using instrumented impact testing at energy levels ranging from 5 J to 50 J impact energy. The transverse stiffness of the cores and their composites has also been evaluated through static compression studies. Compression-after-impact studies were then performed on the sandwich composites with traditional and pin-reinforcement cores. Supporting vibration studies have been conducted to assess the changes in stiffness of the samples as a result of the impact damage. The focus of this paper is on the compression-after-impact (CAI) response and vibration studies with accompanying discussion pertaining to the low velocity impact.


2011 ◽  
Vol 284-286 ◽  
pp. 607-610
Author(s):  
Jiang Tao Ruan ◽  
Min Shen ◽  
Jing Wei Tong ◽  
Shi Bin Wang ◽  
Francesco Aymerich ◽  
...  

In this paper, the deformation measurements of impacted and non-impacted composite laminates under compressive loading are taken. [03/903]S orientated cross-ply laminated plates with impact delamination and without delamination are tested using an anti-buckling testing device in compression experiment. The delamination is induced by low-velocity impact test at the impact energy level of 3.105J. For both impacted and non-impacted specimens, the compressive deformation is measured by a carrier electronic speckle pattern interferometry (CESPI) optical measurement technique. It is found that the deformation behavior of the two specimens presents a mixed deformation mode. However, the delamination has significant effect on the compressive deformation of composite laminates.


2016 ◽  
Vol 838 ◽  
pp. 29-35
Author(s):  
Michał Landowski ◽  
Krystyna Imielińska

Flexural strength and low velocity impact properties were investigated in terms of possibile improvements due to epoxy matrix modification by SiO2 nanoparticles (1%, 2%, 3%, 5%, 7%wt.) in glass/epoxy laminates formed using hand lay-up method. The matrix resin was Hexion L285 (DGEBA) with Nanopox A410 - SiO2 (20 nm) nanoparticle suspension in the base epoxy resin (DGEBA) supplied by Evonic. Modification of epoxy matrix by variable concentrations of nanoSiO2 does not offer significant improvements in the flexural strength σg, Young’s modulus E and interlaminar shear strength for 1% 3% and 5% nanoSiO2 and for 7% a slight drop (up to ca. 15-20%) was found. Low energy (1J) impact resistance of nanocomposites represented by peak load in dynamic impact characteristics was not changed for nanocompoosites compared to the unmodified material. However at higher impact energy (3J) nanoparticles appear to slightly improve the impact energy absorption for 3% and 5%. The absence or minor improvements in the mechanical behaviour of nanocomposites is due to the failure mechanisms associated with hand layup fabrication technique: (i.e. rapid crack propagation across the extensive resin pockets and numerous pores and voids) which dominate the nanoparticle-dependent crack energy absorption mechanisms (microvoids formation and deformation).


2016 ◽  
Vol 827 ◽  
pp. 145-148 ◽  
Author(s):  
Sneha Samal ◽  
David Reichmann ◽  
Iva Petrikova ◽  
Bohdana Marvalova

Low velocity impact strength of the fabric reinforced geocomposite has investigated in this article. Various fabrics such as carbon and E-glass were considered for reinforcement in geopolymer matrix. The primary two parameters such as low velocity, impact damage modes are explained on the E-glass and carbon based fabric geocomposite. The onset mode of damage to failure mode is examined through C-scan analysis. The quality of the composite is observed using c-scan with acoustic vibration mode of sensor before and after impact test. Then the effect of fabric and matrix on the impact behaviour is discussed. Residual strength of the composite is measured to determine post impact behaviour. It has been observed that resistance properties of E-glass reinforced composite is better than carbon fabric reinforced composite.


Sign in / Sign up

Export Citation Format

Share Document