scholarly journals Characteristics of calcined palm oil pastes for biosilica extraction as a function of calcination temperatures

2021 ◽  
Vol 19 (1) ◽  
pp. 23-34
Author(s):  
N. A. S. Abdul Samat ◽  
U. Z. Kamarul Jaman ◽  
S. Saree ◽  
D. S. A. Mahmod ◽  
J. C. H. Lai

Palm oil production in Malaysia has increased over the years. As the consequence of high production of palm oil, surplus quantities of palm oil biomass wastes such as empty fruit bunches (EFB), palm kernel shell (PKS), and oil palm decanter cake (DC) are generated. Generally, these wastes are used as fuel to generate steam for boilers, which end up as ash. As several agricultural wastes are well-known to be rich in silica content, this study aims to investigate the bio-silica content of EFB, PKS and DC and their characteristics when calcined at various calcination temperatures from 400°C to 800°C. Several analyses were conducted such as weight loss, color, BET, SEM and FTIR. The results have shown that all samples favorably exhibited silica at higher temperatures, i.e., 800°C. Color analysis depicted that combustible elements were mostly removed at 800°C, leaving non-combusted silica in the waste ash. Weight loss analysis presented that EFB achieved the highest weight loss at 99.05%, followed by PKS at 95.65% and DC at 83.95%. This led to a relatively high amount or purity of silica in the sample. BET analysis showed highest surface area, 20.087m2/g (PKS) and the lowest is 9.492m2/g (DC) at 800°C which verified the high porosity of samples for further absorption applications. The presence of silica was also significantly observed in 800°C FTIR spectra for all waste samples. Overall, it is concluded that EFB, PKS, and DC are highly potential wastes to contribute to the production of bio-silica, which thus can be an option to overcome waste disposal issues in palm oil industries.

2018 ◽  
Vol 7 (3.18) ◽  
pp. 94
Author(s):  
Nur Nur Amalina Shairah Abdul Samat ◽  
Siti Aishah Zulkafly ◽  
Ummie Zulaikha Kamarul Jaman ◽  
Nur Syuhada Ahmad Zauzi ◽  
Md Rezaur Rahman ◽  
...  

Due to high production of palm oil, surplus quantities of palm oil wastes such as empty fruit bunches (EFB) and palm kernel shells (PKS) are generated. This study aims to analyze the characteristics of EFB and PKS ashes and their respective bio-silica content when combusted at different temperatures; 400°C, 600°C and 800°C. Several tests like weight loss, colour and Fourier Transform Infrared (FTIR) analysis are conducted. EFB records higher weight loss compared to PKS for all combustion temperatures, thus implying less silica content compared to the later. Both wastes also show the highest weight loss at 99.20% and 98.51% respectively, when they are burnt at 800°C than those combusted at lower temperatures. This happens because more impurities evaporate at 800°C, thus resulting in greater relative amount of silica in the ash. Colour analysis shows that the whiteness of both EFB and PKS ashes are the highest when combustion occurs completely at 800°C, particularly at 71.56 and 42.40 respectively. Besides, FTIR analysis depicts distinct presence of Si-O and Si-O-Si functional groups in both EFB and PKS ashes for all temperatures. It is also shown that combustion at 400°C are insufficient to remove impurities like hydroxyl groups, CH2 components and organic compounds.  


Author(s):  
Abd Halim Shamsuddin ◽  
Mohd Shahir Liew

Malaysia has about 4.2 million hectares of oil palm plantation. The palm oil milling industry has over 400 mills throughout the country with total milling capacity of 82 million tonnes fresh fruit bunches, FFB, per year. In 2003, the amount of FFB processed was 67 million tonnes, which generated solid wastes in the forms of empty fruit bunches, EFB (19.43 million tonnes), mesocarp fibres (12.07 million tonnes) and palm kernel shell (4.89 million tonnes). These wastes has moisture content of 60–70% for EFB and mesocarp fibre, and 34–40% for palm kernel shell, and calorific value of 5.0 – 18.0 Mj/kg. A processing technology was developed to process these low quality biomass fuels into high quality solid biofuel briquettes with moisture content in the range 8–12%. Depending on the formulations and the sources of the raw biomass, the final solid biofuel briquettes can have calorific values in the range of 18–25 Mj/kg. The production of the solid biofuel briquettes would be an attractive financial advantage for full exploitation of biomass fuels. Logistic problems due to the disperse nature of the biomass resources would significantly be addressed.


2016 ◽  
Vol 35 (2) ◽  
pp. 150-157 ◽  
Author(s):  
M. Shahbaz ◽  
S. Yusup ◽  
M. Y. Naz ◽  
S. A. Sulaiman ◽  
A. Inayat ◽  
...  

AgriPeat ◽  
2019 ◽  
Vol 18 (02) ◽  
pp. 113-124
Author(s):  
Journal Journal

                                                                                                                                   ABSTRAK Kelapa sawit merupakan tanaman perkebunan yang memegang peranan penting dalam industri pangan. Luas perkebunan kelapa sawit di Indonesia pada tahun 2014 mencapai 10 juta Ha. Pertumbuhan yang pesat diikuti dengan produksi crude palm oil (CPO) dan palm karnel oil (PKO) yang juga meningkat, sekaligus produk sampingan berupa limbah. Salah satu limbah pabrik kelapa sawit yang jumlahnya besar adalah tandan kosong kelapa sawit (TKKS). Tandan kosong kelapa sawit merupakan limbah organik yang berpotensi dimanfaatkan dibidang pertanian. Akan tetapi, TKKS memiliki nilai C/N yang cukup tinggi, akibatnya sukar dan lama untuk terdekomposisi. Salah satu cara pemanfaatan TKKS adalah dengan dilakukan pengomposan dengan pengkayaan urea. Diharapkan dengan perlakuan tersebut TKKS akan cepat terdekomposisi dan dapat segera dimanfaatkan oleh tanaman. Penelitian ini bertujuan untuk (1) mengetahui pengaruh pemberian urea terhadap pengomposan TKKS dan (2) mengetahui pengaruh peningkatan dosis urea terhadap kualitas kompos TKKS. Rancangan yang digunakan dalam penelitian ini adalah Rancangan Acak Lengkap (RAL) faktor tunggal dengan 5 perlakuan, yaitu U1 (urea 0 g setara dengan nilai C/N=), U2 (urea 30,9 g setara dengan nilai C/N=), U3 (urea 79,3 g setara dengan nilai C/N=), U4 (urea 176,1 g setara dengan nilai C/N=) dan U5 (urea 466,3 g setara dengan C/N = ) dan 9 ulangan, sehingga diperoleh 45 satuan percobaan. Hasil penelitian menunjukan bahwa pemberian urea berpengaruh sangat nyata terhadap susut bobot, kadar air, nilai pH kompos, C-organik, N-total, P-tersedia, dan nilai C/N, selain itu pemberian urea mengakibatkan terjadi perubahan tekstur dan warna pada kompos TKKS. Pemberian dosis urea 466,3 g mampu meningkatkan kandungan N-total, serta menurunkan nilai C/N dan nilai pH kompos. Pemberian dosis urea 79,3 g atau setara dengan C/N = mampu meningkatkan kandungan P-tersedia dan kadar air, menurunkan susut bobot dan kandungan C-organik, serta menunjukan perubahan tekstur dan warna yang lebih baik. Kata kunci: tanda kosongkelapa sawit (TKSS), kompos, urea                                                                                                                                        ABSTRACT Empty fruit bunches (EFB) is a solid wastes produced in large quantity from palm oil industry. Empty fruit bunches can be used as compost material, additionally difficult to decompose because it contain cellulose, hemicellulose, and lignin, as well as value of ratio C/N is high. Use EFB as compost material through the provision of urea has been done in this research. Urea are expected to reduce the value of ratio C/N and became a starter for microbial decomposers. The purpose of this research were (1) to determine the effect of urea on composting of EFB and (2) to determine the effect of increasing doses of urea to the quality of compost of EFB. This research was used a single factor of Completely Randomized Design (CRD) with 5 treatments, namely U1 (urea 0 g), U2 (urea 30,9 g), U3 (urea 79,3 g), U4 (urea 176,1 g), and U5 (urea 466,3 g), and 9 replications, until result 45 experimental units. The result showed that urea significant effect on weight loss, water content, value of pH compost, C-organic, N-total, P-available, and value of ratio C/N, besides urea resulted Widodoe, K. dkk Percepatan Pengomposan Tandan Kosong Kelapa Sawit…..…. 114 in a change in texture and color on the compost EFB. Application of urea 466,3 g was able to increase the content of N-total, reduce the value of ratio C/N and the value of pH compost. Application of urea 79,3 g can improve the content of P-available and water content, reduce the weight loss and the content of C-organic, and showed the changes in texture and color as better. Keywords: empty fruit bunches, compost, urea


2021 ◽  
Vol 14 ◽  
pp. 58-62
Author(s):  
Anita Ramli ◽  
Siti Eda Eliana Misi ◽  
Mas Fatiha Mohamad ◽  
Suzana Yusup

Zeolite β supported bimetallic Fe and Ni catalysts have been prepared using sequential impregnation method and calcined at temperatures between 500-700 ºC. The catalytic activity of these catalysts in a steam gasification of palm kernel shell was tested in a fixed-bed quartz micro-reactor at 700 ºC. Both Fe and Ni active metals present in FeNi/BEA and NiFe/BEA catalysts are corresponding to Fe2O3 and NiO. Different calcination temperatures and different sequence in metal addition have a significant effect to the catalytic activity where FeNi/BEA (700) shows the highest hydrogen produced than other catalysts.


2019 ◽  
Vol 11 (11) ◽  
pp. 5877-5889 ◽  
Author(s):  
Harvindran Vasu ◽  
Choon Fai Wong ◽  
Navin Raj Vijiaretnam ◽  
Yen Yee Chong ◽  
Suchithra Thangalazhy-Gopakumar ◽  
...  

2015 ◽  
Vol 77 (12) ◽  
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mohd Warid Hussin ◽  
Abdul Rahman Mohd. Sam ◽  
Mostafa Samadi ◽  
Mohamed A. Ismail ◽  
...  

This paper presents the utilization of palm oil fuel ash and oil palm kernel shell as cement and sand replacement, respectively in the production of palm oil fuel ash based mortar mixes as part of new and innovative materials in the construction industry. The study includes basic properties such as water absorption, density, compressive strength, and microstructure test with regards to variations in the mix design process. In order to get better performance in terms of strength development, the ash used was subjected to heat treatment and grounded to the size of less than 2 µm. High volume of 80% palm oil fuel ash was used as cement replacement, while 25%, 50%, 75%, and 100% of oil palm kernel shell was used as sand replacement. The results indicated that the density of the mortar decreases with increasing volume of oil palm kernel ash as sand replacement. Three different types of mortar were produced with different percentages of oil palm kernel shell, which was high strength, medium strength, and low strength lightweight mortars.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 393
Author(s):  
Noor Amira Sarani ◽  
Aeslina Abdul Kadir ◽  
Hamidah Syd Othman

The demand for brick materials is expected to increase rapidly. However, pollutant emission during the firing process becomes a threat to the human and environment. Therefore, this study is focusing on the release of pollutant gasses during firing manufactured bricks. The bricks were incorporated with 5% of palm oil waste (palm kernel shell and empty fruit bunches) and fired at different heating rates: 1°C/min, 3°C/min and 5°C/min. All samples were fired until it reached 1050°C and retained for 2 hours soaking time. The gas emission measured during firing process includes carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxide (NO) and sulfur dioxide (SO2). The results of estimated total emission (ETE) of gasses were compared to control bricks and palm oil waste brick. The result obtained has shown that increased heating rates cause decreased in gas emission, especially for CO2 and CO. Therefore, this study determined that pollutant gasses are least minimal at high heating rates (5°C/min). As a conclusion, several pollutant gasses did not comply with the federal Clean Air Act’s National Ambient Air Quality Standard (NAAQS) set by Environmental Protection Agency.


2016 ◽  
Vol 19 (2) ◽  
pp. 917-927 ◽  
Author(s):  
Jeeban Poudel ◽  
Tae-In Ohm ◽  
Jae Hoi Gu ◽  
Myung Chul Shin ◽  
Sea Cheon Oh

Sign in / Sign up

Export Citation Format

Share Document