scholarly journals A Proteomics Approach to Identify Possible Biomarkers of Early and Late Stages of E. coli-induced Urinary Tract Infections

Author(s):  
Abdullah E. Alsubhi ◽  
Ghadah S. Alsharif ◽  
Ahmed A. Mirza

As one of the most common bacterial infections globally, urinary tract infections (UTI)s affect the bladder and kidneys of many the bladders and kidneys of many. Along with gram-negative bacteria, Escherichia coli (E. coli) causes nearly 40% of nosocomial UTIs, 25% of recurrent infections, and between 80 to 90% of community-acquired infections. Proteomics, commonly used to study changes in protein expression of organisms, can be used to explore candidate biomarkers useful for the diagnosis of pathological conditions. Here, protein profiles of samples from patients diagnosed with E. coli-induced UTI were compared to identify distinctive proteins. Extracted proteins from bacteria from patients’ urine samples were separated into excisable spots using 2D-gel electrophoresis. The gels were then analyzed using Progenesis SameSpot software to select uniquely expressed protein spots, excised, and analyzed by LC/MS. The results were then compared against a database of known proteins. We identified two proteins, outer membrane protein A (OmpA) and RNA polymerase-binding transcription factor (DksA), involved in the survival of E. coli in the harsh environment of the host. We suggest their use as a part of a battery of possible biomarkers proteins for E. coli-induced UTI, and suggest that their overexpression is possibly associated with the stage of infection, early or late.

Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 304 ◽  
Author(s):  
Beata Zalewska-Piątek ◽  
Rafał Piątek

Urinary tract infections (UTIs) are regarded as one of the most common bacterial infections affecting millions of people, in all age groups, annually in the world. The major causative agent of complicated and uncomplicated UTIs are uropathogenic E. coli strains (UPECs). Huge problems with infections of this type are their chronicity and periodic recurrences. Other disadvantages that are associated with UTIs are accompanying complications and high costs of health care, systematically increasing resistance of uropathogens to routinely used antibiotics, as well as biofilm formation by them. This creates the need to develop new approaches for the prevention and treatment of UTIs, among which phage therapy has a dominant potential to eliminate uropathogens within urinary tract. Due to the growing interest in such therapy in the last decade, the bacteriophages (natural, genetically modified, engineered, or combined with antibiotics or disinfectants) represent an innovative antimicrobial alternative and a strategy for managing the resistance of uropathogenic microorganisms and controlling UTIs.


2020 ◽  
Author(s):  
Hussein O.M. Al-Dahmoshi ◽  
Noor S.K. Al-Khafaji ◽  
Farah T. Al-Alaq

Acinetobacter baumannii is one of the opportunistic bacteria firstly related with the hospital acquired infection influencing primarily to weakening the patient in the ICU. It is sometimes transferred to the patient by transient colonization of hands of the workers of healthcare, and persistence on eco-surfaces. Acinetobacter baumannii inhalation aerosolized through endo-tracheal suctioning of the ventilated patient is widespread among ventilator-related pneumonia (VAP). It is infections mainly associated with ventilator-related pneumonia (VAP), community Acquired Pneumonia (CAP), invasive bacterial infections (IBIs) and UTI (urinary tract infection). It is one of the prominent uropathogens problematic with antibiotic resistance especially carbapenem resistant Acinetobacter baumannii (CRAB). Their colonization of urinary tract and establishment of infection may attributed mainly to set of virulence factors like: Acinetobactin-assisted iron acquisition system, Bap (biofilm-related protein), phospholipase D, Ata (Acinetobacter trimeric autotransporter), chaperone-usher type pilus (Csu), OmpA (outer membrane protein A), and Plasminogen-binding protein (CipA). The common drugs used for treatment Acinetobacter baumannii infections involve polymyxins, glycylcyclines, tetracyclines, mono-bactams, fluoroquinolones, aminoglycosides, antipseudomonal carbapenems, antipseudomonal cephalosporins, and sulbactam. The rates of MDR isolation or also comprehensively the resistant Acinetobacter baumannii are significantly increased and so the combination of two or more (colistin, tigecycline, or colistin-rifampicin combination therapy) drugs is sometimes used to treat infections of MDR-AB. As a conclusion the Acinetobacter baumannii engagement in urinary tract infections attributed mainly to their adhesins, invasins and intrinsic antibiotic resistance.


2011 ◽  
Vol 60 (4) ◽  
pp. 279-285 ◽  
Author(s):  
BEATA M. ZALEWSKA-PIĄTEK

Urinary tract infections are a very serious health and economic problem affecting millions of people each year worldwide. The most common etiologic agent of this type of bacterial infections, involving the upper and lower urinary tract, are E. coli strains representing approximately 80% of cases. Uropathogenic E. coli strains produce several urovirulence factors which can be divided into two main types, surface virulence factors and exported virulence factors. Surface-exposed structures include mainly extracellular adhesive organelles such as fimbriae/pili necessary in adhesion, invasion, biofilm formation and cytokine induction. Among the surface-exposed polymeric adhesive structures there are three most invasive groups, type 1 pili, type P pili and Dr family of adhesins which are bioassembled via the conserved, among Gram-negative bacteria, chaperone-usher secretion system. Type 1 and P-piliated E. coli cause cystitis and pyelonephritis. The Dr family of adhesins recognizing DAF receptor is responsible for cystitis, pyelonephritis (especially in pregnant women) and diarrhoea (in infants). In addition, Dr-positive E. coli strains carry the risk of recurrent urinary tract infections. Pyelonephritis in pregnant women leads to a series of complications such as bacteremia, urosepsis, acute respiratory distress syndrome and even death. In the era of increasing drug resistance of bacteria, the development of vaccines, drugs termed pilicides and inhibitors of adhesion may be a promising tool in the fight against urogenital infections.


2021 ◽  
Author(s):  
Sushmita Sudarshan ◽  
Jacob Hogins ◽  
Sankalya Ambagaspitiye ◽  
Philippe Zimmern ◽  
Larry Reitzer

Uropathogenic E. coli (UPEC) is the causative pathogen for most uncomplicated urinary tract infections. Motility is likely to contribute to these infections, and E. coli possesses flagella-dependent swimming motility, flagella-dependent surface motility (often called swarming), and the recently observed pili-dependent surface motility. Surface motility has not been extensively studied, but for the strains that have been tested nonpathogenic E. coli (NPEC) lab strains use pili, NPEC hypermotile derivatives of these lab strains use flagella, and UPEC strains use flagella. Using a representative of these three types of strains, we showed differences in the nutritional and pathway requirements for surface motility with respect to the glucose concentration, the glycolytic pathway utilized, acetogenesis, and the TCA cycle. In addition, glucose controlled flagella synthesis for the NPEC strain, but not for the hypermotile NPEC variant or the UPEC strain. The requirements for surface motility are likely to reflect major metabolic differences between strains for the pathways and regulation of energy metabolism. IMPORTANCE Urinary tract infections (UTIs) are one of the most common bacterial infections and are an increasing burden on the healthcare system because of recurrence and antibiotic resistance (1, 2). The most common uropathogen is E. coli (3, 4), which is responsible for about 80-90% of community acquired UTIs and 40-50% of nosocomial acquired UTIs (2). Virulence requires both pili and flagella, and either appendage can contribute to surface motility, although surface motility of uropathogenic E. coli has not been examined. We found different appendage, nutrient and pathway requirements for surface motility of a nonpathogenic E. coli lab strain and a uropathogenic E. coli. We propose that these differences are the result of differences in the pathways and regulation of energy metabolism.


2019 ◽  
Vol 73 ◽  
pp. 269-281
Author(s):  
Beata Zalewska-Piątek ◽  
Rafał Piątek ◽  
Beata Krawczyk ◽  
Marcin Olszewski

Urinary tract infections (UTIs) are one of the most often and most common bacterial infections affecting even 150 millions of people each year worldwide. The problem of these infections results from chronicity, recurrences and increasing drug resistance of uropathogens causing them. Uropathogenic E. coli strains (UPEC) are the dominant causative agent of UTIs. These strains have many adhesion factors located on the surface of their cells responsible for the initial stage of adherence and colonization of the urinary tract. Among UPEC, the most common virulence factors are monoadhesive pili of type 1 and P and poliadhesins of Dr family, that biogensis is carried out via the conserved secretion pathway of chaperone-usher type (CUP). In addition to urovirulence factors, the UPEC strains developed a number of mechanisms important in pathogenesis of UTIs and enabling them to survive in the urinary tract environment (adhesion, invasion, formation of intracellular aggregates and quiescent bacterial reservoirs, strukturalfilamentation of bacteria, resistance to antibiotics). Commonly used antibiotic therapy seems to be very effective in the control and treatment of UTIs. However, the increasing multidrug resistance of bacterial strains and the high frequency of recurrences and chronicity of the infections are the basis for the development of alternative therapeutic forms and prevention strategies.


Author(s):  
Lubna Farooq ◽  
Shaikh Nadeem Ahmed ◽  
Muhammad Aitmaud Uddolah Khan ◽  
Akhtar Ali ◽  
Sehrish Mehmood ◽  
...  

Background: Urinary tract infections are found to be commonest bacterial infections across the globe. Various studies have demonstrated high prevalence rate of UTIs in Pakistan. Multiple broad spectrum antibiotics are being used for the treatment of UTI but the resistance by the pathogen against these drugs is increasing worldwide. As the resistance in the organisms is increasing day by day, and it is now hall mark and matter of concern for clinicians to treat uropathogenic E. coli, so there is a pertinent need to explore new sensitive antibiotics or alternative options to manage the disease. Aims: To determine the pathogen burden and susceptibility pattern of ceftolozane/tazobactam against MDR E. coli isolates from clinical specimens of urinary tract infections in Karachi. Study Design:  It was an in-vitro clinical study. Study Settings: The study was conducted in department of Pharmacology, Baqai Medical University and isolates were collected from Microbiology laboratory of Karachi. Methodology: On the basis of identification methods, one hundred and fifty (150) strains of E. coli were isolated from 650 specimen of urine. Clinical isolates were identified by standard and specific microbiological methods. The antibiotic susceptibility pattern was determined by Kirby Bauer Disc diffusion method. Samples were processed as per procedures defined by Clinical and Laboratory Standards Institute (CLSI) guidelines 2018. Results: Out of 150 isolates of E. coli, 95 (63.3%) were MDR E. coli. majority of the cases were obtained from age group 61-80 year (32.6%). Highest sensitivity was seen by ceftolozane/tazobactam (96%) followed by ceftriaxone (88%). Least sensitivity was observed with Imipenem (13.70%). However increased trend of resistance was seen among all empirical used drugs.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Anthony Mansour ◽  
Essa Hariri ◽  
Samar Shelh ◽  
Ralph Irani ◽  
Mohamad Mroueh

Urinary tract infections (UTIs) are among the most common bacterial infections affecting women. UTIs are primarily caused byEscherichia coli, which increases the likelihood of a recurrent infection. We encountered two cases of recurrent UTIs (rUTIs) with a positiveE. coliculture, not improving with antibiotics due to the development of antibiotic resistance. An alternative therapeutic regimen based on parsley and garlic, L-arginine, probiotics, and cranberry tablets has been given. This regimen showed a significant health improvement and symptoms relief without recurrence for more than 12 months. In conclusion, the case supports the concept of using alternative medicine in treating rUTI and as a prophylaxis or in patients who had developed antibiotic resistance.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1156
Author(s):  
Wei-Hung Lin ◽  
Yen-Zhen Zhang ◽  
Po-Yao Liu ◽  
Po-Shun Chen ◽  
Shining Wang ◽  
...  

Escherichia coli causing urinary tract infections (UTIs) are one of the most common outpatient bacterial infections. This study aimed to compare the characteristics of E. coli isolated from UTI patients in a single medical center in 2009–2010 (n = 504) and 2020 (n = 340). The antimicrobial susceptibility of E. coli was determined by the disk diffusion method. PCRs were conducted to detect phylogenetic groups, ST131, K1 capsule antigen, and 15 virulence factors. Phylogenetic group B2 dominated in our 2009–2010 and 2020 isolates. Moreover, no phylogenetic group E strains were isolated in 2020. E. coli isolates in 2020 were more susceptible to amoxicillin, ampicillin/sulbactam, cefuroxime, cefmetazole, ceftazidime, cefoxitin, tetracycline, and sulfamethoxazole/trimethoprim, compared to the isolates in 2009–2010. Extensively drug-resistant (XDR)-E. coli in 2009–2010 were detected in groups B1 (5 isolates), B2 (12 isolates), F (8 isolates), and unknown (1 isolate). In 2020, XDR-E. coli were only detected in groups A (2 isolates), B2 (5 isolates), D (1 isolate), and F (4 isolates). The prevalence of virulence factor genes aer and fimH were higher in E. coli in 2009–2010 compared to those in 2020. In contrast, afa and sat showed higher frequencies in E. coli isolates in 2020 compared to E. coli in 2009–2010.


Sign in / Sign up

Export Citation Format

Share Document