scholarly journals Effect of Input Process Parameters on Cutting Speed for Al/Al2o3 MMC in Wire EDM

Author(s):  
Harsimran Singh
2018 ◽  
Vol 53 (11) ◽  
pp. 1459-1473 ◽  
Author(s):  
Shiva Dayal Rao B ◽  
Abhijeet Sethi ◽  
Alok Kumar Das

In the present investigation, a continuous wave fiber laser with maximum power of 400 W was used to cut a glass fiber reinforced plastic sheet of 4.56 mm thickness using Nitrogen as assisting gas. The influence processing parameters such as laser irradiance, gas pressure, and cutting speed on the cut surface quality were investigated by using response surface methodology. The different responses of laser cut surface such as upper kerf width, taper percentage along the cut depth, and heat-affected zone on the top surface were measured to analyze the influence of input process parameters on the responses. A statistical analysis on the obtained results was conducted and found that the optimum values of different input process parameters were laser irradiance: 8.28 × 105 watt/cm2, cutting speed: 600 mm/min and assisting gas pressure: 7.84 bar. The corresponding values of responses were upper kerf width: 177.4 µm, taper 0.73%, and heat-affected zone on top surface: 109.23 µm. The confirmation experiments were conducted with the obtained optimum parameter setting and observed that the predicted values and experimental values for upper kerf width, taper percentage and top surface heat-affected zone were within the error limits of 2.52%, 1.84%, and 0.45%, respectively. Furthermore, damages like loose fibers, interlayer fractures, evaporation of matrix material and fiber breakages were observed.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Madhanagopal Manoharan ◽  
Arul Kulandaivel ◽  
Adinarayanan Arunagiri ◽  
Mohamad Reda A. Refaai ◽  
Simon Yishak ◽  
...  

Milling is the surface machining process by removing material from the raw stock using revolving cutters. This process accounts for a major stake in most of the Original Equipment Manufacturing (OEM) industries. This paper discusses optimizing process parameters for machining the AA 2014 T 651 using a vertical milling machine with coated cutting tools. The process parameters such as cutting speed, depth of cut, and type of the cutting tool with all its levels are identified from the previous literature study and several trial experiments. The Taguchi L9 Orthogonal Array (OA) is used for the experimental order with the chosen input parameters. The commonly used cutting tools in the machining industry, such as High-Speed Steel (HSS) and its coated tools, are considered in this study. These tools are coated with Titanium Nitride (TiN) and Titanium Aluminum Nitride (TiAlN) by Physical Vapor Deposition (PVD) technique. The output responses such as cutting forces along the three-axis are measured using a milling tool dynamometer for the corresponding input factors. The input process parameters are optimized by considering the output responses such as MRR, machining torque, and thrust force. Grey Taguchi-based Response Surface Methodology (GTRSM) is used for multiobjective multiresponse optimization problems to find the optimum input process parameter combination for the desired response. Polynomial regression equations are generated to understand the mathematical relation between the input factor and output responses as well as Grey Relational Grade (GRG) values. The optimum process parameter combination from the desirability analysis is the HSS tool coated with TiAlN at a cutting speed of 270 rpm and a depth of cut value of 0.2 mm.


2016 ◽  
Vol 30 (1) ◽  
pp. 30-46 ◽  
Author(s):  
Pramendra Kumar Bajpai ◽  
Kishore Debnath ◽  
Inderdeep Singh

Natural fiber-reinforced composite materials are finding wide acceptability in various engineering applications. A substantial increase in the volume of production of these composites necessitates high-quality cost-effective manufacturing. Drilling of holes is an important machining operation required to ascertain the assembly operations of intricate composite products. In the present experimental investigation, natural fiber (sisal and Grewia optiva fiber)-reinforced polylactic acid-based green composite laminates were developed using hot compression through film stacking method. The drilling behavior of green composite laminates was evaluated in terms of drilling forces (thrust force and torque) and drilling-induced damage. The cutting speed, feed rate, and the drill geometry were taken as the input process parameters. It was concluded that all the three input process parameters affect the drilling behavior of green composite laminates. The drill geometry was established as an important input parameter that affects the drilling forces and subsequently the drilling-induced damage.


Titanium alloy materials machining is difficult, expensive and leads to wear and tear of the tool. The improvement in the tool life and use of optimal process parameters during machining is necessary to obtain better work piece surface finish. Here main aims to evaluate the effect of input process parameters on cutting force in Vortex Tube Jet Assisted CNC Machining of Titanium Alloy material. Taguchi L27 orthogonal array design matrix were used for experimentations by employing a Vortex Tube Jet Assisted cooling system. The significantly affecting process parameters are identified through ANOVA, and optimal parameters were identified using Taguchi and RSM. A mathematical model is proposed to estimate cutting forces based on selected input process parameters. The result reveals that the most influencing parameter is depth of cut (d). Whereas cutting speed and feed are influences very less. The cutting force (Fc) estimated from the proposed model is in close agreement with experimental results.


Titanium alloy materials machining is difficult, expensive and leads to wear and tear of the tool. The improvement in the tool life and use of optimal process parameters during machining is necessary to obtain better work piece surface finish. Here main aims to evaluate the effect of input process parameters on cutting force in Vortex Tube Jet Assisted CNC Machining of Titanium Alloy material. Taguchi L27 orthogonal array design matrix were used for experimentations by employing a Vortex Tube Jet Assisted cooling system. The significantly affecting process parameters are identified through ANOVA, and optimal parameters were identified using Taguchi and RSM. A mathematical model is proposed to estimate cutting forces based on selected input process parameters. The result reveals that the most influencing parameter is depth of cut (d). Whereas cutting speed and feed are influences very less. The cutting force (Fc) estimated from the proposed model is in close agreement with experimental results.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Nikolaos E. Karkalos ◽  
Panagiotis Karmiris-Obratański ◽  
Szymon Kurpiel ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Surface quality has always been an important goal in the manufacturing industry, as it is not only related to the achievement of appropriate geometrical tolerances but also plays an important role in the tribological behavior of the surface as well as its resistance to fatigue and corrosion. Usually, in order to achieve sufficiently high surface quality, process parameters, such as cutting speed and feed, are regulated or special types of cutting tools are used. In the present work, an alternative strategy for slot milling is adopted, namely, trochoidal milling, which employs a more complex trajectory for the cutting tool. Two series of experiments were initially conducted with traditional and trochoidal milling under various feed and cutting speed values in order to evaluate the capabilities of trochoidal milling. The findings showed a clear difference between the two milling strategies, and it was shown that the trochoidal milling strategy is able to provide superior surface quality when the appropriate process parameters are also chosen. Finally, the effect of the depth of cut, coolant and trochoidal stepover on surface roughness during trochoidal milling was also investigated, and it was found that lower depths of cut, the use of coolant and low values of trochoidal stepover can lead to a considerable decrease in surface roughness.


2015 ◽  
Vol 772 ◽  
pp. 245-249
Author(s):  
A. Ramamurthy ◽  
R. Sivaramakrishnan ◽  
S. Venugopal ◽  
T. Muthuramalingam

It is very important and complexity to find the optimum values of wire EDM process parameters and contribution of each parameter to attain the better performance characteristics. In this study, an attempt has been made to optimize those parameters while machining the titanium alloy. Since the process involves more one than one response parameter, it is essential to carry out the multi-response optimization methodology .The experiments have been conducted with different levels of input factors such as pulse on time,pulse off time and wire tension based on Taguchi L9 orthogonal table.Wire EDM optimal process parameter has been identified using grey relational analysis and significant parameter has been determined by analysis of variance. Experimental results have indicated that the multi-response characteristic such as material removal rate and surface roughness can be improved effectively through grey relational analysis.


2015 ◽  
Vol 88 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Shib Shankar Banerjee ◽  
Anil K. Bhowmick

ABSTRACT The application of the low-power CO2 laser-cutting process to fluoroelastomer (FKM), polyamide 6 (PA6), PA6/FKM thermoplastic elastomers (TPEs), and their thermoplastic vulcanizate (TPV) is reported. The main laser process parameters studied were laser power, cutting speed, and material thickness. The value of the top and bottom widths of the slit that were formed during laser cutting (kerf width), melted transverse area, and melted volume per unit time were measured and analyzed. Interestingly, TPE showed a smaller melted area and melted volume per unit time when compared with those values with PA6. Dynamic vulcanization further decreased these values. For example, the melted areas of PA6 and TPE were 510 × 10−3 mm2 and 305 × 10−3 mm2, respectively, which reduced to 238 × 10−3 mm2 for TPV at 40 W laser power. FKM showed the lowest value (melted area of 180 × 10−3 mm2). In addition, the output quality of the cut surface was examined by measuring the root mean square (RMS) roughness of the cut edges and heat-affected zone (HAZ). The obtained results indicated that the dimension of the HAZ and RMS roughness largely decreased in TPE when compared with PA6. For example, the HAZ of PA6 was 700 μm, which decreased to 230 μm for TPE at 40 W laser power. On the other hand, HAZ was nonexistent for FKM. Infrared spectroscopic analysis showed that there was no structural change of TPE or pristine polymers after applying the low-power CO2 laser on the surface of materials. CO2 laser cutting will be a new technique in this industry, and this analysis will assist the manufacturing industry to choose a suitable laser system with exhaustive information of process parameters for cutting or machining of rubber, TPEs, and TPVs.


Author(s):  
C. Divya ◽  
L. Suvarna Raju ◽  
B. Singaravel

Turning process is a primary process in engineering industries and optimization of process parameters enhance the machining performance. Inconel 718 is a nickel-based superalloy, widely found applications in the manufacturing of blades, sheets and discs in aircraft engines and rocket engines. It provides toughness at low temperature, with stand high mechanical stresses at elevated temperature and creep resistance. In this work, turning process is carried out on Inconel 718 with micro whole textured cutting inserts filled with solid lubricants. Three different solid lubricants are used namely molybdenum-di-sulfide (MoS2), tungsten-di-sulfide (WS2) and calcium-di-fluoride (CaF2). Experiments are performed as per L9 orthogonal array. Statistical approaches such as orthogonal array, Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA) are used to find the importance and effects of machining parameters. In this study, input parameters included are feed, cutting speed and depth of cut and output parameter includes surface roughness. Optimization of process parameters is carried out and the significance is estimated. The result suggested that WS2 followed by MoS2 and CaF2 given good surface finish value. Also, solid lubricant in machining enhances the sustainability in manufacturing.


Sign in / Sign up

Export Citation Format

Share Document