scholarly journals Machine Learning Approach for Automatic Detection of Alzheimers Disease using Resting State fMRI

Author(s):  
K. Emily Esther Rani

Alzheimer’s Disease (AD) is a neurological disease that affects memory and the livelihood of the people that are diagnosed with it. Efficient automated techniques for early diagnosis of AD is very important because early diagnosis is used to prevent a patient from death. In this work, we present a novel computer-aided diagnosis (CAD) techniques using machine learning algorithms for the early diagnosis of AD. The input resting state fMRI(rsfMRI) images are taken from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The input image is pre-processed using Discrete Wavelet Transform(DWT). Automated thresholding algorithm is used to segment the image. Then, the segmented resting state fMRI images are used to extract useful and informative features. The best features are selected by Fisher’s code feature selection algorithm. Finally, an automated Image classification step is performed using machine learning algorithms Support Vector Machine(SVM), Decision Tree , Random Forest and Multi-Layer Perceptron algorithms to distinguish between normal patients and AD patients.

Recent research in computational engineering have evidenced the design and development numerous intelligent models to analyze medical data and derive inferences related to early diagnosis and prediction of disease severity. In this context, prediction and diagnosis of fatal neurodegenerative diseases that comes under the class of dementia from medical image data is considered as the challenging area of research for many researchers. Recently Alzheimer’s disease is considered as major category of dementia that affects major population. Despite of the development of numerous machine learning models for early diagnosis of Alzheimer’s disease, it is observed that there is a lot more scope of research. Addressing the same, this article presents a systematic literature review of machine learning techniques developed for early diagnosis of Alzheimer’s disease. Furthermore this article includes major categories of machine learning algorithms that include artificial neural networks, Support vector machines and Deep learning based ensemble models that helps the budding researchers to explore the scope of research in predicting Alzheimer’s disease. Implementation results depict the comparative analysis of state of art machine learning mechanisms.


2021 ◽  
Vol 22 (5) ◽  
pp. 2761
Author(s):  
Chun-Hung Chang ◽  
Chieh-Hsin Lin ◽  
Hsien-Yuan Lane

Background: Alzheimer’s disease (AD) is a complex and severe neurodegenerative disease that still lacks effective methods of diagnosis. The current diagnostic methods of AD rely on cognitive tests, imaging techniques and cerebrospinal fluid (CSF) levels of amyloid-β1-42 (Aβ42), total tau protein and hyperphosphorylated tau (p-tau). However, the available methods are expensive and relatively invasive. Artificial intelligence techniques like machine learning tools have being increasingly used in precision diagnosis. Methods: We conducted a meta-analysis to investigate the machine learning and novel biomarkers for the diagnosis of AD. Methods: We searched PubMed, the Cochrane Central Register of Controlled Trials, and the Cochrane Database of Systematic Reviews for reviews and trials that investigated the machine learning and novel biomarkers in diagnosis of AD. Results: In additional to Aβ and tau-related biomarkers, biomarkers according to other mechanisms of AD pathology have been investigated. Neuronal injury biomarker includes neurofiliament light (NFL). Biomarkers about synaptic dysfunction and/or loss includes neurogranin, BACE1, synaptotagmin, SNAP-25, GAP-43, synaptophysin. Biomarkers about neuroinflammation includes sTREM2, and YKL-40. Besides, d-glutamate is one of coagonists at the NMDARs. Several machine learning algorithms including support vector machine, logistic regression, random forest, and naïve Bayes) to build an optimal predictive model to distinguish patients with AD from healthy controls. Conclusions: Our results revealed machine learning with novel biomarkers and multiple variables may increase the sensitivity and specificity in diagnosis of AD. Rapid and cost-effective HPLC for biomarkers and machine learning algorithms may assist physicians in diagnosing AD in outpatient clinics.


Author(s):  
Adwait Patil

Abstract: Alzheimer’s disease is one of the neurodegenerative disorders. It initially starts with innocuous symptoms but gradually becomes severe. This disease is so dangerous because there is no treatment, the disease is detected but typically at a later stage. So it is important to detect Alzheimer at an early stage to counter the disease and for a probable recovery for the patient. There are various approaches currently used to detect symptoms of Alzheimer’s disease (AD) at an early stage. The fuzzy system approach is not widely used as it heavily depends on expert knowledge but is quite efficient in detecting AD as it provides a mathematical foundation for interpreting the human cognitive processes. Another more accurate and widely accepted approach is the machine learning detection of AD stages which uses machine learning algorithms like Support Vector Machines (SVMs) , Decision Tree , Random Forests to detect the stage depending on the data provided. The final approach is the Deep Learning approach using multi-modal data that combines image , genetic data and patient data using deep models and then uses the concatenated data to detect the AD stage more efficiently; this method is obscure as it requires huge volumes of data. This paper elaborates on all the three approaches and provides a comparative study about them and which method is more efficient for AD detection. Keywords: Alzheimer’s Disease (AD), Fuzzy System , Machine Learning , Deep Learning , Multimodal data


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Morshedul Bari Antor ◽  
A. H. M. Shafayet Jamil ◽  
Maliha Mamtaz ◽  
Mohammad Monirujjaman Khan ◽  
Sultan Aljahdali ◽  
...  

Alzheimer’s disease has been one of the major concerns recently. Around 45 million people are suffering from this disease. Alzheimer’s is a degenerative brain disease with an unspecified cause and pathogenesis which primarily affects older people. The main cause of Alzheimer’s disease is Dementia, which progressively damages the brain cells. People lost their thinking ability, reading ability, and many more from this disease. A machine learning system can reduce this problem by predicting the disease. The main aim is to recognize Dementia among various patients. This paper represents the result and analysis regarding detecting Dementia from various machine learning models. The Open Access Series of Imaging Studies (OASIS) dataset has been used for the development of the system. The dataset is small, but it has some significant values. The dataset has been analyzed and applied in several machine learning models. Support vector machine, logistic regression, decision tree, and random forest have been used for prediction. First, the system has been run without fine-tuning and then with fine-tuning. Comparing the results, it is found that the support vector machine provides the best results among the models. It has the best accuracy in detecting Dementia among numerous patients. The system is simple and can easily help people by detecting Dementia among them.


Author(s):  
Saroj Kumar Pandey ◽  
Rekh Ram Janghel ◽  
Pankaj Kumar Mishra ◽  
Kshitiz Varma ◽  
Prashant Kumar ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xun-Heng Wang ◽  
Lihua Li

Inattention is one of the most significant clinical symptoms for evaluating attention deficit hyperactivity disorder (ADHD). Previous inattention estimations were performed using clinical scales. Recently, predictive models for inattention have been established for brain-behavior estimation using neuroimaging features. However, the performance of inattention estimation could be improved for conventional brain-behavior models with additional feature selection, machine learning algorithms, and validation procedures. This paper aimed to propose a unified framework for inattention estimation from resting state fMRI to improve the classical brain-behavior models. Phase synchrony was derived as raw features, which were selected with minimum-redundancy maximum-relevancy (mRMR) method. Six machine learning algorithms were applied as regression methods. 100 runs of 10-fold cross-validations were performed on the ADHD-200 datasets. The relevance vector machines (RVMs) based on the mRMR features for the brain-behavior models significantly improve the performance of inattention estimation. The mRMR-RVM models could achieve a total accuracy of 0.53. Furthermore, predictive patterns for inattention were discovered by the mRMR technique. We found that the bilateral subcortical-cerebellum networks exhibited the most predictive phase synchrony patterns for inattention. Together, an optimized strategy named mRMR-RVM for brain-behavior models was found for inattention estimation. The predictive patterns might help better understand the phase synchrony mechanisms for inattention.


Sign in / Sign up

Export Citation Format

Share Document