scholarly journals Overview of Cyber Security

Author(s):  
Praveen Pandey

Abstract: Cyber security are techniques generally set forth in published materials that attempt to safeguard the cyber environment of a user or organization. It manages the set of techniques used to save the integrity of networks, programs and data from unauthorized access. It refers to the body of technologies, processes, and it may also be referred to as information technology security. The field is of growing importance due to increasing reliance on computer systems, including smart phones, televisions and the various tiny devices that constitute the Internet of Things. Keywords: IT security, Internet of things (IOT)

Author(s):  
Э.Д. Алисултанова ◽  
Л.К. Хаджиева ◽  
М.З. Исаева

Данная статья посвящена созданию профориентационной (умной) лаборатории, которая призвана сформировать у школьников базовые представления о технологии Интернет вещей (IoT), угрозах кибербезопасности в этой сфере, мотивировать к получению в будущем профильного образования и построению карьеры в области обеспечения безопасности Интернет вещей (IoT) при функционировании умного производства. Обучение школьников в профориентационной лаборатории, построенное на основе применения интерактивных электронных образовательных ресурсов, прежде всего будет позиционировать карьерные возможности будущих специалистов в сфере обеспечения безопасности Интернет вещей (IoT) при функционировании умного производства. В рамках функционирования лаборатории особое внимание обучающихся сконцентрировано на тематиках правовых аспектов обеспечения кибербезопасности, главных тенденциях развития киберугроз в современном глобальном информационном пространстве и мерах, необходимых для их нейтрализации. This article is devoted to the creation of a career-oriented (smart) laboratory, which is designed to formulate in schoolchildren basic ideas about the Internet of Things (IoT) technology, cyber security threats in this area, motivate to receive specialized education in the future and build a career in the field of Internet things (IoT) security) with the functioning of smart manufacturing. The training of schoolchildren in a vocational guidance laboratory, based on the use of interactive electronic educational resources, will primarily position the career opportunities of future specialists in the field of Internet of Things (IoT) security in the operation of smart manufacturing. Within the framework of the functioning of the laboratory, special attention of students is concentrated on the topics of the legal aspects of ensuring cyber security, the main trends in the development of cyber threats in the modern global information space and the measures necessary to neutralize them.


Author(s):  
Jonika Lamba ◽  
Esha Jain

Cybersecurity is not just about fortification of data. It has wide implications such as maintaining safety, privacy, integrity, and trust of the patients in the healthcare sector. This study methodically reviews the need for cybersecurity amid digital transformation with the help of emerging technologies and focuses on the application and incorporation of blockchain and the internet of things (IoT) to ensure cybersecurity in the well-being of the business. It was found in the study that worldwide, advanced technology has been used in managing the flow of data and information, India should focus on maintaining the same IT-enabled infrastructure to reduce causalities in the nation and on the other hand improve administration, privacy, and security in the hospital sector. Depending on the network system, resource allocation, and mobile devices, there is a need to prioritize the resources and efforts in the era of digitalization.


Author(s):  
Md Alimul Haque ◽  
Shameemul Haque ◽  
Kailash Kumar ◽  
Narendra Kumar Singh

The role of the internet of things (IoT) and cyberspace in a digital society is well recognized, and they have become tremendously popular due to certain features like the ability to ease the operational process of businesses and instant communication. Recent developments in the fields of wireless communication networks like 4G, 5G, and 6G with IoT applications have greatly benefited human welfare. Still, the rapid growth of various IoT applications focuses on automating different tasks and are trying to empower the inanimate physical objects to act without any human intervention. It has also contributed to unethical practices by hackers who use new tools and techniques to penetrate more complex or well-controlled environments and produce increased damage and even remain under the cover. The main objective of this chapter is to improve understanding of the challenges to secure future digital infrastructure while it is still evolving. In this context, a detailed review of the security-related issues, challenges, threats, and countermeasures in the IoT applications is presented.


2021 ◽  
Vol 23 (06) ◽  
pp. 164-169
Author(s):  
D. Arun Shunmugam ◽  
◽  
Dr. K. Ruba Soundar ◽  
M. Desiya Narayan ◽  
◽  
...  

The Internet of Things (IoT) is a cutting-edge and quickly advancing innovation wherein everything (brilliant items and keen gadgets) is connected to the web for effective correspondence between them. The web of things is an impetus for medical care and assumes a basic part in an assortment of medical services following applications. By gathering internal heat level, circulatory strain, and sugar levels, organized sensors gadgets, regardless of whether worn on the body or installed in living conditions; permit the assortment of rich information to decide a patient’s physical and psychological well-being condition. The troublesome errand in the Internet of things is conveying the gathered information to the specialist, settling on the right choices dependent on the information gathered, and advising the patient. The creator of this paper centers around an investigation of IoT-based medical care frameworks, just as promising circumstances and difficulties for IoT-based patient wellbeing checking frameworks.


Author(s):  
М.А. Держо ◽  
М.М. Лаврентьев ◽  
А.В. Шафаренко

В данной работе обсуждаются фундаментальные вопросы разработки программ магистратуры в области Интернета вещей (Internet of Things — IoT). Мы кратко сравниваем предложения Сколтеха и Стэнфорда и утверждаем, что наиболее гибкое решение достигается посредством вводного блока и четырех параллельных потоков учебных курсов: обработка сигналов и управление, обучение машин и искусственный интеллект (ИИ), программирование и схемотехника платформ с применением микроконтроллеров, и, наконец, сети и кибербезопасность. Вводный блок предполагается оснастить достаточным количеством предметов по выбору, чтобы поступающие выпускники бакалавриата из областей прикладной математики, информационных технологий и электроники/телекоммуникаций могли приобрести необходимые знания для освоения потоковых курсов. Мы утверждаем, что еще одним необходимым отличием программы IoT должен явиться междисциплинарный групповой дипломный проект значительного объема, также основанный на потоковых курсах. This paper discusses the fundamentals of postgraduate curriculum development for the area of the Internet of Things (IoT). We provide a brief contrasting analysis of Skoltech and Stanford Masters programs and argue that the most flexible way forward is via the introduction of a leveling-off, elective introductory stage, and four parallel course streams: signal processing and control; Artificial Intelligence (AI), and machine learning; microcontroller systems design; and networks and cyber security. The leveling-off stage is meant to provide sufficient electives for graduates of applied math, Information Technologies (IT), or electronics/telecom degrees to learn the necessary fundamentals for the stream modules. We argue that another distinguishing feature of an IoT masters program is a large project drawing on the stream modules and requiring a multidisciplinary, team development effort.


Author(s):  
C.R Srinivasan ◽  
Guru Charan ◽  
P Chenchu Sai Babu

<span>Smart and connected health care is of specific significance in the spectrum of applications enabled the Internet of Things (IoT). Networked sensors, either embedded inside our living system or worn on the body, enable to gather rich information regarding our physical and mental health. In specific, the accessibility of information at previously unimagined scales and spatial longitudes combined with the new generation of smart processing algorithms can expedite an advancement in the medical field, from the current post-facto diagnosis and treatment of reactive framework, to an early-stage proactive paradigm for disease prognosis combined with prevention and cure as well as overall administration of well-being rather than ailment. This paper sheds some light on the current methods accessible in the Internet of Things (IoT) domain for healthcare applications. The proposed objective is to design and create a healthcare system centered on Mobile-IoT by collecting patient information from different sensors and alerting both the guardian and the doctor by sending emails and SMS in a timely manner. It remotely monitors the physiological parameters of the patient and diagnoses the illnesses swiftly. </span>


2019 ◽  
Vol 11 (9) ◽  
pp. 194 ◽  
Author(s):  
Sherali Zeadally ◽  
Farhan Siddiqui ◽  
Zubair Baig

Bluetooth technology started off as a wireless, short-range cable replacement technology but it has undergone significant developments over the last two decades. Bluetooth radios are currently embedded in almost all computing devices including personal computers, smart phones, smart watches, and even micro-controllers. For many of us, Bluetooth is an essential technology that we use every day. We provide an insight into the history of Bluetooth and its significant design developments over the last 25 years. We also discuss related issues (including security) and Bluetooth as a driving technology for the Internet of Things (IoT). Finally, we also present recent research results obtained with Bluetooth technology in various application areas.


2019 ◽  
pp. 1018-1049
Author(s):  
Marcus Tanque ◽  
Harry J. Foxwell

This chapter examines and explains cyber resilience, internet of things, software-defined networking, fog computing, cloud computing, and related areas. Organizations develop these technologies in tandem with cyber resilience best practices, such as processes and standards. Cyber resilience is at the intersection of cyber security and business resilience. Its core capabilities encompass integrated strategic policies, processes, architectures, and frameworks. Governments and industries often align defensive and resilient capabilities, to address security and network vulnerability breaches through strategic management processes.


Sign in / Sign up

Export Citation Format

Share Document