scholarly journals Effect of long-term natural aging on microstructure and room temperature superplastic behavior of UFG / FG Zn-Al alloys processed by ECAP

2018 ◽  
Vol 8 (4) ◽  
pp. 532-537
Author(s):  
M. Demirtas ◽  
H. Yanar ◽  
G. Purcek
2018 ◽  
Vol 385 ◽  
pp. 72-77
Author(s):  
Muhammet Demirtas ◽  
Harun Yanar ◽  
Onur Saray ◽  
Gençağa Pürçek

Three Zn-Al alloys, namely Zn-22Al, Zn-5Al and Zn-0.3Al, were subjected to equal-channel angular pressing (ECAP), and the effect of ECAP on their microstructure and room temperature (RT) superplastic behavior were investigated in detail referring to previous studies reported by the authors of the current study. ECAP remarkably refined the microstructures of three alloys as compared to their pre-processed conditions. While the lowest grain size was achieved in Zn-22Al alloy as 200 nm, the grain sizes of Zn-5Al and Zn-0.3Al alloys were ~540 nm and 2 µm, respectively, after ECAP. After the formation of fine/ultrafine-grained (F/UFG) microstructures, all Zn-Al alloys exhibited superplastic behavior at RT and high strain rates. The maximum superplastic elongations were 400%, 520% and 1000% for Zn-22Al, Zn-5Al and Zn-0.3Al alloys, respectively. It is interesting to point out that the highest RT superplastic elongation was obtained in Zn-0.3Al alloy with the largest grain size, while Zn-22Al alloy having the lowest grain size showed the minimum superplastic elongation. This paradox was attributed to the different phase compositions of these alloys. The formation of Al-rich α/α phase boundaries, where grain boundary sliding is minimum comparing to Zn-rich η/η and η/α phase boundaries of Zn-Al alloys, is the lowest level in Zn-0.3Al alloy among all the alloys. Therefore, it can be concluded that if it is desired to achieve high superplastic elongation in Zn-Al alloys at RT, keeping Al content at a possibly minimum level seems to be the most suitable way.


2008 ◽  
Vol 584-586 ◽  
pp. 501-506 ◽  
Author(s):  
Nguyen Q. Chinh ◽  
Jenő Gubicza ◽  
Tomasz Czeppe ◽  
Janos Lendvai ◽  
Zoltán Hegedűs ◽  
...  

This work is focused on the effect of the combination of natural aging and severe plastic deformation (SPD) produced by Equal-Channel Angular Pressing (ECAP) on the microstructure and strength of supersaturated AlZnMg alloys. Following a solution heat-treatment and quenching into water at room temperature, samples were naturally aged for different time periods and then processed by ECAP. The microstructure and mechanical properties of these samples are described and discussed. This investigation leads to proposing an interesting application of ECAP for supersaturated alloys. Using the shear bands created by ECAP in only one pass and applying appropriate subsequent aging treatments, composite-like microstructures can be achieved in conventional age-hardenanble Al alloys.


2019 ◽  
Vol 18 (4) ◽  
pp. 604-615
Author(s):  
Sora H Abed ◽  
Abdul Wahid K Rajih ◽  
Ahmed O Al-Roubaiy

Super plasticity behavior finds applications in so many fields, for example the aerospacemanufacturing that is the main bazaar for super plasticity, but automotive, medical, sports,cookware and architectural applications have their share too. "In this work a study of thesuperplastic behavior of a new Zn-Al alloy was conducted. In addition to the investigation ofthe possible superplastic behavior of Zn-0.5Al alloy. These alloys were prepared by usinggravity and chill casting techniques. Zn-0.5Al alloy was subjected to hot rolling at 250 ºCand cold rolling at room temperature, while Zn-48Al alloy was also hot rolled at 250 ºC to20% reduction in the thickness of sample followed by partial remelting at 500 ºC. Severaltests were carried out such as physical, mechanical and chemical which include (XRF, XRD,OP, SEM, Microhardness (HV) and Tensile (cold, hot) test). Results showed that the"Zn-0.5Al alloy has poor mechanical properties and may not be regarded as a superplastic alloycompared with Zn-48Al alloy. The Zn-48Al alloy generally enhanced all properties. Themaximum elongation of (450%) was obtained in Zn-48Al alloy after thermomechanicalcontrolling process and partial remelting.


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


Author(s):  
Tali H. Horst ◽  
Richard D. Smith ◽  
Antje Potthast ◽  
Martin A. Hubbe

AbstractThree copies of a book that had been optionally deacidified using two different procedures in 1967, and then subjected to accelerated aging, were tested again after 52 years of natural aging. Matched copies of the book Cooking the Greek Way, which had been printed in Czechoslovakia on acidic paper, were evaluated. Nonaqueous treatment of two of the copies with magnesium methoxide dissolved in chlorofluorocarbon solvent had been found in 1967 to have decreased the susceptibility to embrittlement, as evidenced by the results of the accelerated aging, followed by folding endurance tests. Retesting of the same books in 2019, after 52 years of room temperature storage, showed that the deacidification treatments had achieved the following benefits in comparison to the untreated book: (a) higher brightness; (b) higher folding endurance; (c) tensile breaking length higher in the cross-direction of the paper; (d) substantial alkaline reserve content, (e) an alkaline surface pH in the range 7.1–7.4, and (f) higher molecular mass of the cellulose. Remarkably, some of the folding endurance results matched those of unaged samples evaluated in 1967. Scanning electron micrographs showed no differences between the treated and untreated books.


Solar Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 28-34
Author(s):  
Mahmoud Samadpour ◽  
Mahsa Heydari ◽  
Mahdi Mohammadi ◽  
Parisa Parand ◽  
Nima Taghavinia

2012 ◽  
Vol 531 ◽  
pp. 219-222
Author(s):  
Li Hua Shen ◽  
Ting Shang ◽  
Jun Zhou ◽  
Dong Wang ◽  
Yu Han ◽  
...  

Extremely small-sized superparamagnetic magnetite nanoparticles of 3Cit). The resulting Cit-coated magnetite nanoparticles exhibited long-term colloidal stability in aqueous media without any surface modification. Regarding the magnetic properties, the nanoparticles were superparamagnetic at room temperature, and might be the potential candidate for MRI contrast agents.


2021 ◽  
Author(s):  
◽  
Matt Cryer

<p>Colloidal semiconductor nanocrystals (NCs) with bandgaps less than 1 eV allow the development of mid wave infrared (MIR) sensitive detectors that exploit the benefits of colloidal materials, primarily bandgap selection and solution deposition. Additionally, the electrical behaviour of these films can be examined for characteristics that can increase the functionality of NC based detectors.  The production of devices that are designed to be competitive as ultra-low-cost, room temperature MIR detectors, operating with photonic, rather than thermal detection is detailed. The evolution of the colloidal synthesis, spray deposition methods, substrate materials and post deposition treatments used here lead to highly robust and high performing devices. These devices demonstrate a “colour” sensitivity down to 300 nm in the MIR (≈10 % of scale), with superior responsivities for this class of device, up to 0.9 AW⁻¹, and competitive specific detectivity up to 8 × 10⁹ Jones at 200 Hz and 300 K. Furthermore, these devices utilise a cheap and robust substrate material that allows operation after deformation up to 45 ° without degradation over many cycles. These devices offer a template for ultra-low-cost MIR detectors with performance that rivals microbolometers but with better measurement speed and spectral sensitivity. As such these devices showcase the key advantages of using colloidal NCs in MIR applications.  Planar and fully air processed thin film devices that demonstrate photo-induced memristive behaviour and can be used as a transistors, photode-tectors or memory devices are investigated. Following long term (60 h) air exposure, unpackaged NC films develop reliable memristive characteristics in tandem with temperature, gate and photoresponse. On/off ratios of more than 50 are achieved and the devices show long term stability, producing repeatable metrics over days of measurement. The on/off behaviour is shown to be dependent on previous charge flow and carrier density, implying memristive rather than switching behaviour. These observations are described within a long term trap filling model. This work represents an advance in the integration of NC films into electronic devices, which may lead to the development of multi-functional electronic components.  Building on the previous work the steps taken to move from a planar device, that works well in controlled conditions, to a multi-pixel sensor that can demonstrate MIR video imaging at room temperature in a noisy environment are shown. This is achieved with a 15 pixel detector that consists only of a polymer substrate and solution patterned NC pixels. This device can detect a 373 K object with the device at 298 K in a noisy environment. This performance is enabled by photogain at 5 V bias that reaches a maximum External Quantum Efficiency (EQE) of 1940 ± 290 % for a pixel with a 3.3 µm bandgap. Through the use of four separate bandgaps it is shown that “multicolour” thermal imaging systems can deliver another layer of information, on top of intensity, to the user. The behaviour of the system is examined under use and it is shown that the photoconductive device behaves as expected with regards to bias, and that trap enabled gain is sensitive to total incident flux, more than the spectral energy distribution of the target. Finally, it is shown that solution patterned QD fabrication methods can deliver electrical reproducibility between pixels that is sufficient to allow an imaging plane of multiple pixels.  The somewhat neglected tin chalcogenide semiconductor nanocrystals are investigated and inverse MIR detection at room temperature is demonstrated with planar, solution and airprocessed PbSnTe and SnTe QD devices. The detection mechanism is shown to be mediated by an interaction between MIR radiation and the vibrational stretches of adsorbed hydroxyl species at the oxdised NC surface. Devices are shown to possess mAW⁻¹ responsivity via a reduction in film conductance due to MIR radiation and, unlike classic MIR photoconductors, are unaffected by visible wavelengths. As such these devices offer the possibility of MIR thermal imaging that has an intrinsic solution to the blinding caused by higher energy light sources.  In summary, it is shown that semiconductor NCs with an all ambient fully solution processed deposition and ligand exchange procedure can be used to create simple, robust and cheap devices that are beginning to demonstrate metrics on par with current commercial thermal detector systems. It is also shown that these devices can under certain circumstances demonstrate novel behaviours that offer the prospects of enhanced or novel functionality.</p>


2008 ◽  
Vol 496 (1-2) ◽  
pp. 366-375 ◽  
Author(s):  
D. Picard ◽  
M. Fafard ◽  
G. Soucy ◽  
J.-F. Bilodeau

Sign in / Sign up

Export Citation Format

Share Document