scholarly journals Inhibition of Pro-Inflammatory Molecules by Ginger (Zingiber officinale Roscoe) and its Anti-Inflammatory Effects on Arthritis Patients

2020 ◽  
Vol 10 (2-s) ◽  
pp. 125-139
Author(s):  
D Mutthuraj ◽  
T Vinutha ◽  
TS Gopenath ◽  
B Kaginelli ◽  
M Karthikeyan ◽  
...  

Herbal medicinal plants are used to treat various disorders in many traditional medicinal systems around the world. Usage of this herb found in Indian and Chinese medicinal systems. The availability of ginger herb is Universal these days, where it is cultivated for its underground stem (Pseudo-stem). Most commonly used part is rhizome. This  ginger rhizome has many therapeutic uses including anti-inflammatory, anti-diabetics, antioxidant, anti-microbial and also curing in vomiting, constipation, indigestion, cold, fever,cough, nausea, reparatory conditions, bronchitis  etc., these activities were checked using different solvents of different polarity. Arthritis is known for its extreme joint pain and swelling may be treated by using ginger essential oil extract. It was studied that it has the capacity to reducing the pro-inflammatory molecules by lowering the RA-F, CRP, ESR level in the blood.The essences of ginger are due to the chemicals present in them. The products obtained from the ginger like essential oil and oleoresin are used all around the world for its food and pharmaceutical properties.The bioactive compounds like [6]- gingerol and its dehydrated form [6]- shogaol can inhibits the production of free radicals and oxidative stress, along with this properties it can reduce the pro-inflammatory molecules like prostaglandins by inhibiting COX-1 and COX-2.It also observed by the recent studies that the ginger and its extract have the capacity of suppressing the leukotriene biosynthesis by inhibiting 5-lipoxygenase. To this effect in-vitro study conducted in the lab shows the maximum inhibition as well as maximum protection by the ginger essential oil extract. The essential oil extraction were administered external apply and the variation in the certain proteins and inflammation related antibodies were studied. Keywords:  Zingiber offcinale, Spice, Arthritis, Essential oil, Anti-Inflammatory, Gingerol, Shogaol, Auto-Immune Disorders.

Biomedicine ◽  
2020 ◽  
Vol 39 (2) ◽  
pp. 234-238
Author(s):  
Shivani Narendra ◽  
Anitha Roy ◽  
Rajeshkumar Shanmugam ◽  
Lakshmi Thangavelu

Introduction and Aim: The most emerging area of research in nanotechnology deals with the synthesis of nanoparticles which are of great importance due to its use in various biological fields. Myristica fragrans is commonly known as “nutmeg”. It is popular as a spice and also possesses various therapeutic properties. It has a characteristic pleasant fragrance and a slightly warm taste. It has various therapeutic uses and is widely used. The aim is to assess the anti-inflammatory activity of nutmeg oleoresin mediated silver nanoparticles. Materials and Methods: The nutmeg oleoresin mediated silver nanoparticles were synthesized and was confirmed by UV Vis spectroscopy. The anti-inflammatory property of the prepared nutmeg oleoresin mediated silver nanoparticles was assessed using albumin denaturation inhibitory assay technique. Results: The nutmeg oleoresin mediated silver nanoparticles showed good anti-inflammatory activity with increasing concentration of the nanoparticles. Conclusion: Although a variety of steroidal and non-steroidal anti-inflammatory drugs have been developed, researchers are focusing on natural substances to develop new anti-inflammatory agents. Nutmeg mediated silver nanoparticles showed a good range of inhibition and can be used against inflammation. The myristicin present in the nutmeg maybe responsible for its anti-inflammatory action. Increased albumin denaturation is reported in conditions like in rheumatoid arthritis, diabetes and cancer. Hence this may pay way to manage such conditions.  


2019 ◽  
Vol 20 (4) ◽  
Author(s):  
Izabela Czapska ◽  
Elżbieta Studzińska-Sroka ◽  
Wiesława Bylka

Cinnamon, the bark of various species of cinnamon, is used in the food spice used throughout the world. In medicine, cinnamon bark and bark oil are used for dyspeptic ailments, fullness and bloating, and cinnamon bark products are recommended as helpful in symptomatic treatment of mild diarrhea also are recommended to support the treatment of diabetes. Cinnamon contains essential oil, whose main active ingredient is cinnamaldehyde, as well as procyanidins, terpenes. This paper presents the results of in vitro experiments on antidiabetic action, along with the mechanism of this activity as well as on antimicrobial, anti-inflammatory and cytotoxic also presented. This article also contains information on the dosage of cinnamon bark and cinnamon bark oil.


Separations ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 240
Author(s):  
Krishnamachari Janani ◽  
Kavalipurapu Venkata Teja ◽  
Mohammad Khursheed Alam ◽  
Deepti Shrivastava ◽  
Azhar Iqbal ◽  
...  

Gram-negative, anaerobic bacterias are predominate in periapical infections. The bacterial lipopolysaccharide (LPS) initiates the process of inflammation and periapical bone resorption. Usage of various medicaments retards or inactivates the bacterial endotoxin (LPS). However, the results are not highly effective. In recent years, owing to antimicrobial resistance, the shift from conventional agents to herbal agents has been increased tremendously in research. Keeping this in mind, the present study was formulated to evaluate the efficacy of oregano essential oil in inhibiting bacterial LPS- induced osteoclastogenesis. Four different concentrations (0 ng/mL, 25 ng/mL, 50 ng/mL, and 100 ng/mL) of oregano essential oil extract were added into 96-well culture plate. Under light microscope, quantification of osteoclast cells was performed. One-way ANOVA with post-hoc Tukey test was carried out on SPSS v21. A significant reduction (p < 0.001) in the osteoclast was observed in the experimental groups compared to no oregano essential oil extract (control). A dose-dependent significant reduction (p < 0.001) in osteoclast formation was observed among the experimental groups, with lesser osteoclast seen in group IV with 100 ng/mL of oregano essential oil extract. Thus, it can be concluded that oregano essential oil extract can be utilized as a therapeutic agent that can target bacterial LPS-induced osteoclastogenesis. However, randomized controlled studies should be conducted to assess the potential use of this extract in the periapical bone resorption of endodontic origin.


2020 ◽  
Vol 21 (10) ◽  
pp. 927-938 ◽  
Author(s):  
Roktim Gogoi ◽  
Rikraj Loying ◽  
Neelav Sarma ◽  
Twahira Begum ◽  
Sudin K. Pandey ◽  
...  

Background: The essential oil of methyl eugenol rich Cymbopogon khasianus Hack. was evaluated and its bioactivities were compared with pure methyl eugenol. So far, methyl eugenol rich essential oil of lemongrass was not studied for any biological activities; hence, the present study was conducted. Objective: This study examined the chemical composition of essential oil of methyl eugenol rich Cymbopogon khasianus Hack., and evaluated its antioxidant, anti-inflammatory, antimicrobial, and herbicidal properties and genotoxicity, which were compared with pure compound, methyl eugenol. Material and Methods: Methyl eugenol rich variety of Cymbopogon khasianus Hack., with registration no. INGR18037 (c.v. Jor Lab L-9) was collected from experimental farm CSIR-NEIST, Jorhat, Assam (26.7378°N, 94.1570°E). The essential oil wasobtained by hydro-distillation using a Clevenger apparatus. The chemical composition of the essential oil was evaluated using GC/MS analysis and its antioxidant (DPPH assay, reducing power assay), anti-inflammatory (Egg albumin denaturation assay), and antimicrobial (Disc diffusion assay, MIC) properties, seed germination effect and genotoxicity (Allium cepa assay) were studied and compared with pure Methyl Eugenol compound (ME). Results: Major components detected in the Essential Oil (EO) through Gas chromatography/mass spectroscopy analysis were methyl eugenol (73.17%) and β-myrcene (8.58%). A total of 35components were detected with a total identified area percentage of 98.34%. DPPH assay revealed considerable antioxidant activity of methyl eugenol rich lemongrass essential oil (IC50= 2.263 μg/mL), which is lower than standard ascorbic acid (IC50 2.58 μg/mL), and higher than standard Methyl Eugenol (ME) (IC50 2.253 μg/mL). Methyl eugenol rich lemongrass EO showed IC50 38.00 μg/mL, ME 36.44 μg/mL, and sodium diclofenac 22.76 μg/mL, in in-vitro anti-inflammatory test. Moderate antimicrobial activity towards the 8 tested microbes was shown by methyl eugenol rich lemongrass essential oil whose effectiveness against the microbes was less as compared to pure ME standard. Seed germination assay further revealed the herbicidal properties of methyl eugenol rich essential oil. Moreover, Allium cepa assay revealed moderate genotoxicity of the essential oil. Conclusion: This paper compared the antioxidant, anti-inflammatory, antimicrobial, genotoxicity and herbicidal activities of methyl eugenol rich lemongrass with pure methyl eugenol. This methyl eugenol rich lemongrass variety can be used as an alternative of methyl eugenol pure compound. Hence, the essential oil of this variety has the potential of developing cost-effective, easily available antioxidative/ antimicrobial drugs but its use should be under the safety range of methyl eugenol and needs further clinical trials.


2020 ◽  
Vol 16 (8) ◽  
pp. 1227-1244
Author(s):  
Dharmendra Kumar ◽  
Pramod K. Sharma

Background:: Opuntia species, locally known as prickly pear was used for various purposes as food, medicine, beverage, source of dye and animal food. Many studies have revealed its pharmacology activity from time to time. This review is a collection of chemistry, pharmacognosy, pharmacology and bioapplications of the cactus family. Methods: Many sources were used to collect information about Opuntia species such as Pub med, Google scholar, Agris, science direct, Embase, Merk index, Wiley online library, books and other reliable sources. This review contains studies from 1812 to 2019. Results: The plants from the cactus family offer various pharmacological active compounds including phenolic compounds, carotenoids, betalains, vitamins, steroids, sugar, amino acids, minerals and fibers. These bioactive compounds serve various pharmacological activities such as anticancer, antiviral, anti-diabetic, Neuroprotective, anti-inflammatory, antioxidant, Hepatoprotective, antibacterial, antiulcer and alcohol hangover. According to various studies, Opuntia species offer many bioapplications such as fodder for animal, soil erosion, prevention, human consumption and waste water decontamination. Finally, different parts of plants are used in various formulations that offer many biotechnology applications. Conclusion: Different parts of Opuntia plant (fruits, seeds, flowers and cladodes) are used in various health problems which include wound healing, anti-inflammatory and urinary tract infection from ancient times. Nowadays, researches have extended several pharmacological and therapeutic uses of Opuntia species as discussed in this review. Many in-vitro and in-vivo models are also discussed in this review as the proofs of research findings. Various research gaps have been observed in current studies that require attention in the future.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 991
Author(s):  
Melanie S. Matos ◽  
José D. Anastácio ◽  
Cláudia Nunes dos Santos

Inflammation is a crucial and complex process that reestablishes the physiological state after a noxious stimulus. In pathological conditions the inflammatory state may persist, leading to chronic inflammation and causing tissue damage. Sesquiterpene lactones (SLs) are composed of a large and diverse group of highly bioactive plant secondary metabolites, characterized by a 15-carbon backbone structure. In recent years, the interest in SLs has risen due to their vast array of biological activities beneficial for human health. The anti-inflammatory potential of these compounds results from their ability to target and inhibit various key pro-inflammatory molecules enrolled in diverse inflammatory pathways, and prevent or reduce the inflammatory damage on tissues. Research on the anti-inflammatory mechanisms of SLs has thrived over the last years, and numerous compounds from diverse plants have been studied, using in silico, in vitro, and in vivo assays. Besides their anti-inflammatory potential, their cytotoxicity, structure–activity relationships, and pharmacokinetics have been investigated. This review aims to gather the most relevant results and insights concerning the anti-inflammatory potential of SL-rich extracts and pure SLs, focusing on their effects in different inflammatory pathways and on different molecular players.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rosangela Montanaro ◽  
Alessio D’Addona ◽  
Andrea Izzo ◽  
Carlo Ruosi ◽  
Vincenzo Brancaleone

AbstractClodronate is a bisphosphonate agent commonly used as anti-osteoporotic drug. Throughout its use, additional anti-inflammatory and analgesic properties have been reported, although the benefits described in the literature could not solely relate to their inhibition of bone resorption. Thus, the purpose of our in vitro study is to investigate whether there are underlying mechanisms explaining the anti-inflammatory effect of clodronate and possibly involving hydrogen sulphide (H2S). Immortalised fibroblast-like synoviocyte cells (K4IM) were cultured and treated with clodronate in presence of TNF-α. Clodronate significantly modulated iNOS expression elicited by TNF-α. Inflammatory markers induced by TNF-α, including IL-1, IL-6, MCP-1 and RANTES, were also suppressed following administration of clodronate. Furthermore, the reduction in enzymatic biosynthesis of CSE-derived H2S, together with the reduction in CSE expression associated with TNF-α treatment, was reverted by clodronate, thus rescuing endogenous H2S pathway activity. Clodronate displays antinflammatory properties through the modulation of H2S pathway and cytokines levels, thus assuring the control of the inflammatory state. Although further investigation is needed to stress out how clodronate exerts its control on H2S pathway, here we showed for the first the involvement of H2S in the additive beneficial effects observed following clodronate therapy.


2013 ◽  
Vol 65 ◽  
pp. 128
Author(s):  
Ewa Obuchowicz ◽  
Anna M. Bielecka ◽  
Monika Paul-Samojedny ◽  
Marta Nowacka

2018 ◽  
Vol 49 (4) ◽  
pp. 929-935 ◽  
Author(s):  
Carolina M. Bedoya-Serna ◽  
Gustavo C. Dacanal ◽  
Andrezza M. Fernandes ◽  
Samantha C. Pinho

Sign in / Sign up

Export Citation Format

Share Document