scholarly journals FORMULATION AND EVALUATION OF DOXORUBICIN CONTAINING NANOGELS FOR DELIVERY TO CANCER CELLS

2018 ◽  
Vol 8 (5) ◽  
pp. 178-183
Author(s):  
Manish Kumar ◽  
Hemant K. Sharma

The objective of this study is to prepare nanogels were prepared via charged gellan gum. It was prepared by in situ cross linking reaction between two oppositely charged materials by green method without use of chemical cross linking agents. The prepared nanogels were characterized by Dynamic light scattering, scanning electron microscopy, differential scanning calorimetry and X- Ray diffractometry. The prepared formulation had average particle size of 226 nm with polydispersity index of 0.3. The doxorubicin loaded nanogel demonstrated sustained release for 20 h. The prepared nanogels were hemocompatible and cyctocompatible as revealed by hemocompatibility and MTT assay respectively. All results confirmed that these nanogels can be used for cancer treatment. Keywords: Nanogel, Chitosan, Gellan gum, Doxorubicin, Cancer.

2017 ◽  
Vol 8 ◽  
pp. 2116-2125 ◽  
Author(s):  
Jilin Wang ◽  
Hejie Liao ◽  
Yuchun Ji ◽  
Fei Long ◽  
Yunle Gu ◽  
...  

In this work, a reaction coupling self-propagating high-temperature synthesis (RC-SHS) method was developed for the in situ controlled synthesis of novel, high activity TiB2/(TiB2–TiN) hierarchical/heterostructured nanocomposites using TiO2, Mg, B2O3, KBH4 and NH4NO3 as raw materials. The as-synthesized samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray energy dispersive spectroscopy (EDX), transition electron microscopy (TEM), high-resolution TEM (HRTEM) and selected-area electron diffraction (SAED). The obtained TiB2/TiN hierarchical/heterostructured nanocomposites demonstrated an average particle size of 100–500 nm, and every particle surface was covered by many multibranched, tapered nanorods with diameters in the range of 10–40 nm and lengths of 50–200 nm. In addition, the tapered nanorod presents a rough surface with abundant exposed atoms. The internal and external components of the nanorods were TiB2 and TiN, respectively. Additionally, a thermogravimetric and differential scanning calorimetry analyzer (TG-DSC) comparison analysis indicated that the as-synthesized samples presented better chemical activity than that of commercial TiB2 powders. Finally, the possible chemical reactions as well as the proposed growth mechanism of the TiB2/(TiB2–TiN) hierarchical/heterostructured nanocomposites were further discussed.


2020 ◽  
Vol 850 ◽  
pp. 242-248
Author(s):  
Artemijs Ščeglovs ◽  
Kristine Salma-Ancane

At this work hydrogel and composite hydrogel systems based on ԑ-polylysine (EPL), hyaluronic acid (HA) and nanocrystalline hydroxyapatite (nHAp) were synthesized via chemical cross-linking method followed by in situ precipitation of nHAp into hydrogel copolymer matrix. Molecular structure, phase composition and morphology of EPL-HA and EPL-HA/nHAp systems were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray powder diffractometry (XRD) and scanning electron microscopy (SEM). The fabricated hydrogels and composite hydrogels were evaluated by hydrogels characteristics such as gel fraction and swelling behavior. This study provides a new insight to develop cutting-edge bioactive hydrogels and composite hydrogels for bone tissue engineering as injectable biomaterials due to beneficial properties of system components.


2019 ◽  
Vol 25 (1) ◽  
pp. 41
Author(s):  
Hai Minh Le ◽  
Yen Ngoc Nguyen ◽  
Duong Tien Hoang Truong ◽  
Huy Duc Vu ◽  
Hai Hong Nguyen ◽  
...  

The objective of the present work is to investigate the feasibility of the synthesis of copper matrix composite reinforced with in-situ nanosized Al2O3 ¬particle powder via combustion synthesis method from metal nitrates followed by reducing process at high temperature. The starting nitrates Cu(NO3)2.3H2O and Al(NO3)3·9H2O composition corresponds to Cu-30%Al2O3. X-ray Diffraction (XRD) patterns of the obtained powders indicated the presence of the oxides CuO and CuAl2O4. The powder had the size of 75 ± 10 nm after deagglomerating by soft ball milling for 24h. After reducing in CO at 1000oC for 3h, the peaks of the oxides were no longer observed and were replaced by the peaks of Cu and -Al2O3. The morphology of the reduced powders observed by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) analysis showed a well distribution of the -Al2O3 particles within the Cu matrix with an average particle size of 40 nm.


2011 ◽  
Vol 335-336 ◽  
pp. 474-477 ◽  
Author(s):  
Guang Wang ◽  
Pu Wang Li ◽  
Zheng Peng ◽  
Mao Fang Huang ◽  
Ling Xue Kong

Chitosan nanoparticles were successfully prepared by chemical cross-linking with vanillin. The nanoparticles were spherical in shape with smooth surface, and the average particle size of chitosan nanoparticles was 141 nm. The formulation of chitosan nanoparticles is based on Shiff reaction between aldehyde group of vanillin and amino group of chitosan. Chitosan nanoparticles prepared by crosslinking with vanillin are promising vehicle for the drug delivery of various anticancer drugs in the chemotherapy of cancers.


2021 ◽  
Vol 25 (1) ◽  
pp. 41-47
Author(s):  
Hai Minh Le ◽  
Yen Ngoc Nguyen ◽  
Duong Tien Hoang Truong ◽  
Huy Duc Vu ◽  
Hai Hong Nguyen ◽  
...  

The objective of the present work is to investigate the feasibility of the synthesis of copper matrix composite reinforced with in-situ nanosized Al2O3 particle powder via combustion synthesis method from metal nitrates followed by reducing process at high temperature. The starting nitrates Cu(NO3)2.3H2O and Al(NO3)3·9H2O composition corresponds to Cu-30%Al2O3. X-ray Diffraction (XRD) patterns of the obtained powders indicated the presence of the oxides CuO and CuAl2O4. The powder had the size of 75 ± 10 nm after deagglomerating by soft ball milling for 24h. After reducing in CO at 1000oC for 3h, the peaks of the oxides were no longer observed and were replaced by the peaks of Cu and -Al2O3. The morphology of the reduced powders observed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis showed well distribution of the -Al2O3 particles within the Cu matrix with an average particle size of 40 nm.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Azariel Díaz-Hernández ◽  
Jorge Gracida ◽  
Blanca E. García-Almendárez ◽  
Carlos Regalado ◽  
Rosario Núñez ◽  
...  

Cross-linking of magnetic nanoparticles with proteins plays a significant role in the preparation of new materials for biotechnological applications. The aim was the maximization of the magnetic mass attracted and protein loading of magnetic iron oxide nanoparticles coated with chitosan, synthesized in a single step by alkaline precipitation. Chitosan-coated magnetite particles (Fe3O4@Chitosan) were cross-linked to a xylanase and a cellulase (Fe3O4@Chitosan@Proteins), showing a 93% of the magnetic saturation of the magnetite. X-ray diffraction pattern in composites corresponds to magnetite. Thermogravimetry and differential scanning calorimetry showed that 162 mg of chitosan was coating one gram of composite and 12 mg of protein was cross-linked to each gram of magnetic support. Cross-linking between enzymes and Fe3O4@Chitosan was confirmed by infrared spectroscopy with Fourier transform, X-ray energy, and X-ray photoelectron spectroscopy dispersion analysis. From dynamic light scattering, transmission and electron microscopy the average particle size distribution was 230 nm and 430 nm for Fe3O4@Chitosan and Fe3O4@Chitosan@Proteins, showing agglomerates of individual spherical particles, with an average diameter of 8.5 nm and 10.8 nm, respectively. The preparation method plays a key role in determining the particle size and shape, size distribution, surface chemistry, and, therefore, the applications of the superparamagnetic nanoparticles.


2015 ◽  
Vol 69 (10) ◽  
Author(s):  
Ferooze Ahmad Rafiqi ◽  
Kowsar Majid

AbstractThis paper involves the preparation of polythiophene (PTP) and its composite by the oxidative polymerisation method by using ferric chloride as an oxidant and thiophene monomer. The gadolinium( III) complex obtained by the refluxing technique was used as dopant in the PTP matrix. On the basis of the spectroscopic characterisation, seven-coordinate geometry is proposed for the complex. Conductance measurement confirms the non-selectrolyte nature of complex. The PTP and its composite were subjected to FTIR, X-ray diffraction and scanning electron microscope techniques. The powder X-ray diffraction pattern showed the high crystalline nature of the complex which in turn developed a good degree of crystallinity in the PTP composite. The average particle size was calculated as 4.655 ˚A and 3.737 ˚A for the dopant and PTP composite, respectively, by using Debye Scherrer’s equation. Thermal analysis was performed by thermogravimetric (TG) analysis, differential thermal analysis (DTA) and differential scanning calorimetry (DSC) techniques. The TG, DTA and DSC results were well-correlated. The thermal analysis revealed the high thermal stability of the dopant which in turn improved the thermal stability of the PTP composite, revealing the potential of the composite for high temperature applications.


2015 ◽  
Vol 51 (2) ◽  
pp. 255-263
Author(s):  
Rupali Nanasaheb Kadam ◽  
Raosaheb Sopanrao Shendge ◽  
Vishal Vijay Pande

<p>The use of nanotechnology based on the development and fabrication of nanostructures is one approach that has been employed to overcome the challenges involved with conventional drug delivery systems. Formulating Nanoplex is the new trend in nanotechnology. A nanoplex is a complex formed by a drug nanoparticle with an oppositely charged polyelectrolyte. Both cationic and anionic drugs form complexes with oppositely charged polyelectrolytes. Compared with other nanostructures, the yield of Nanoplex is greater and the complexation efficiency is better. Nanoplex are also easier to prepare. Nanoplex formulation is characterized through the production yield, complexation efficiency, drug loading, particle size and zeta potential using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and dialysis studies. Nanoplex have wide-ranging applications in different fields such as cancer therapy, gene drug delivery, drug delivery to the brain and protein and peptide drug delivery.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. A. Athmaselvi ◽  
C. Kumar ◽  
M. Balasubramanian ◽  
Ishita Roy

This study evaluates the physical properties of freeze dried tropical (guava, sapota, and papaya) fruit powders. Thermal stability and weight loss were evaluated using TGA-DSC and IR, which showed pectin as the main solid constituent. LCR meter measured electrical conductivity, dielectric constant, and dielectric loss factor. Functional groups assessed by FTIR showed presence of chlorides, and O–H and N–H bonds in guava, chloride and C–H bond in papaya, and chlorides, and C=O and C–H bonds in sapota. Particle size and type of starch were evaluated by X-ray diffraction and microstructure through scanning electronic microscopy. A semicrystalline profile and average particle size of the fruit powders were evidenced by X-ray diffraction and lamellar/spherical morphologies by SEM. Presence of A-type starch was observed in all three fruits. Dependence of electric and dielectric properties on frequency and temperature was observed.


Author(s):  
Saranyoo Chaiwichian ◽  
Buagun Samran

Abstract Monoclinic BiVO4 photocatalyst films decorated on glass substrates were successfully fabricated via a dip-coating technique with different annealing temperatures of 400 °C, 450 °C, 500°C, and 550 °C. All of the physical and chemical properties of as-prepared BiVO4 photocatalyst film samples were investigated using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectra techniques. The results revealed that the as-prepared BiVO4 photocatalyst film samples retained a monoclinic phase with an average particle size of about 50 – 100 nm. Moreover, the BiVO4 photocatalyst film samples showed a strong photoabsorption edge in the range of visible light with the band gap energy of 2.46 eV. The photocatalytic activities of all the film samples were tested by the degradation of model acid orange 7 under visible light irradiation. The BiVO4 photocatalyst film sample annealed at a temperature of 500 °C showed the highest photoactivity efficiency compared with other film samples, reaching up to 51%within 180 min. In addition, the stability and reusability of BiVO4 photocatalyst film sample made with an annealing temperature of 500 °C did not show loss of photodegradation efficiency of acid orange 7 after ten recycles. A likely mechanism of the photocatalytic process was established by trapping experiments, indicating that the hydroxyl radical scavenger species can be considered to play a key role for acid orange 7 degradation under visible light irradiation.


Sign in / Sign up

Export Citation Format

Share Document