Formulation of Vanillin Cross-Linked Chitosan Nanoparticles and its Characterization

2011 ◽  
Vol 335-336 ◽  
pp. 474-477 ◽  
Author(s):  
Guang Wang ◽  
Pu Wang Li ◽  
Zheng Peng ◽  
Mao Fang Huang ◽  
Ling Xue Kong

Chitosan nanoparticles were successfully prepared by chemical cross-linking with vanillin. The nanoparticles were spherical in shape with smooth surface, and the average particle size of chitosan nanoparticles was 141 nm. The formulation of chitosan nanoparticles is based on Shiff reaction between aldehyde group of vanillin and amino group of chitosan. Chitosan nanoparticles prepared by crosslinking with vanillin are promising vehicle for the drug delivery of various anticancer drugs in the chemotherapy of cancers.

2020 ◽  
Vol 27 (22) ◽  
pp. 3623-3656 ◽  
Author(s):  
Bruno Fonseca-Santos ◽  
Patrícia Bento Silva ◽  
Roberta Balansin Rigon ◽  
Mariana Rillo Sato ◽  
Marlus Chorilli

Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.


2018 ◽  
Vol 8 (5) ◽  
pp. 178-183
Author(s):  
Manish Kumar ◽  
Hemant K. Sharma

The objective of this study is to prepare nanogels were prepared via charged gellan gum. It was prepared by in situ cross linking reaction between two oppositely charged materials by green method without use of chemical cross linking agents. The prepared nanogels were characterized by Dynamic light scattering, scanning electron microscopy, differential scanning calorimetry and X- Ray diffractometry. The prepared formulation had average particle size of 226 nm with polydispersity index of 0.3. The doxorubicin loaded nanogel demonstrated sustained release for 20 h. The prepared nanogels were hemocompatible and cyctocompatible as revealed by hemocompatibility and MTT assay respectively. All results confirmed that these nanogels can be used for cancer treatment. Keywords: Nanogel, Chitosan, Gellan gum, Doxorubicin, Cancer.


2011 ◽  
Vol 10 (01n02) ◽  
pp. 217-221
Author(s):  
SUMISTHA DAS ◽  
NITAI DEBNATH ◽  
R. L. BRAHMACHARY ◽  
RAMESH CHANDRA ◽  
BISWAJIT ROY ◽  
...  

Drinking colloidal gold as elixir of life is an age-old practice worldwide. A large body of data containing patients' experiences after intake of colloidal gold for long duration would be available in the medical records of hospitals. ZnO has been approved by FDA for topical use and not for oral intake. Drosophila melanogaster (wild type) strains were fed with physiologically relevant concentrations of nano-gold and nano- ZnO along with appropriate controls. Citrate-capped nano-gold (average particle size is 15–20 nm) synthesized by reducing hydrogen tetrachloroaurate with 1% trisodium citrate and custom-made nano- ZnO , purchased from M K Implex, Canada (average particle size 50 nm) were used as treatments. Microarray studies revealed that fly trehalose receptor genes, Tre and Tre1, are both unaffected after nano-gold and nano- ZnO treatment. Gr64 subfamily members (encoding sugar receptors like glucose, sucrose, and maltose), for example, Gr64a-b become downregulated, but Gr64c, Gr64d, Gr64f remain unaltered in case of both the treatments. Among bitter receptor genes, Gr66a is the most well studied and shows significant downregulation by nano-gold and not by nano- ZnO . Ppk11 and Ppk19 are gustatory ion channel genes which modulate salt perception. Ppk11 was found to be downregulated by both nano-gold and nano- ZnO , while ppk19 expression is suppressed by nano-gold treatment but not by nano- ZnO . The effects of these two nanoparticles on pheromone receptors (Gr32a, Gr39a, and Gr68a) and CO 2 receptors (Gr21a and Gr63a) are presented. To the best of our knowledge, this is the first report on the effect of pure nanoparticles on gustation. Data has been analyzed in the light of the age-old tradition of oral administration of the nano-gold viz-a-viz topical use of nano- ZnO . These results would have far reaching implications in the design of nano-gold mediated oral drug delivery of cancer and other drugs as well as nano- ZnO coated drugs/cosmetics and nano- ZnO carrier based drug delivery in skins and in other topical applications.


2013 ◽  
Vol 796 ◽  
pp. 360-363 ◽  
Author(s):  
Liang Shan ◽  
Zhan Xiong Li ◽  
Yan Xu ◽  
Lu Cai ◽  
Xiong Zang ◽  
...  

The lightly cross-linked fluorinated polyacrylate latex was synthesized by emulsion copolymerization, in which fluorine containing acrylate, butyl acrylate (BA) and organosiloxane containing bisacrylate were used as monomers. The fluorine containing co-polymeric emulsion was obtained with narrow particle size distribution and the average particle size to be about 130 nm. The emulsion with and without addition of cross-linking agent was applied on silk textile finishing. The result shows that, treating with the emulsion without cross-linking agent, the water-and oil-repellency of silk fabric reached level 3-4 and level 3, respectively, and the contact angle was up to 133.5°. After addition of cross-linking agent, the emulsion can afford the silk fabric with better water-and oil-repellency of level 4 and level 3-4, respectively. The improvement of water-and oil-repellency can probably be attributed to the lightly cross-linking structure of fluoropolymer, the latter resulted in more dense film on the surface of silk fabric after finishing.


Nanoscale ◽  
2019 ◽  
Vol 11 (13) ◽  
pp. 6192-6205 ◽  
Author(s):  
Sajini D. Hettiarachchi ◽  
Regina M. Graham ◽  
Keenan J. Mintz ◽  
Yiqun Zhou ◽  
Steven Vanni ◽  
...  

Most of the dual nano drug delivery systems fail to enter malignant brain tumors due to a lack of proper targeting systems and the size increase of the nanoparticles after drug conjugation. Therefore, a triple conjugated system was developed with carbon dots (C-dots) which has an average particle size of 1.5–1.7 nm.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4792
Author(s):  
Letiția Doina Duceac ◽  
Gabriela Calin ◽  
Lucian Eva ◽  
Constantin Marcu ◽  
Elena Roxana Bogdan Goroftei ◽  
...  

From their discovery, antibiotics have significantly improved clinical treatments of infections, thus leading to diminishing morbidity and mortality in critical care patients, as well as surgical, transplant and other types of medical procedures. In contemporary medicine, a significant debate regarding the development of multi-drug resistance involves all types of pathogens, especially in acute care hospitals due to suboptimal or inappropriate therapy. The possibility of nanotechnology using nanoparticles as matrices to encapsulate a lot of active molecules should increase drug efficacy, limit adverse effects and be an alternative helping to combat antibiotic resistance. The major aim of this study was to obtain and to analyze physico-chemical features of chitosan used as a drug-delivery system in order to stop the antibiotic resistance of different pathogens. It is well known that World Health Organization stated that multidrug resistance is one of the most important health threats worldwide. In last few years, nano-medicine emerged as an improved therapy to combat antibiotic-resistant infections agents. This work relies on enhancement of the antimicrobial efficiency of ceftriaxone against gram(+) and gram(−) bacteria by antibiotic encapsulation into chitosan nanoparticles. Physicochemical features of ceftriaxone-loaded polymer nanoparticles were investigated by particle size distribution and zeta potential, Fourier-transform infrared spectroscopy (FTIR), Thermal Gravimetric Analysis (TG/TGA), Scanning Electron Microscopy (SEM) characteristics techniques. The obtained results revealed an average particle size of 250 nm and a zeta potential value of 38.5 mV. The release profile indicates an incipient drug deliverance of almost 15%, after 2 h of approximately 83%, followed by a slowed drug release up to 24 h. Characteristics peaks of chitosan were confirmed by FTIR spectra indicating a similar structure in the case of ceftriaxone-loaded chitosan nanoparticles. A good encapsulation of the antibiotic into chitosan nanoparticles was also provided by thermo-gravimetric analysis. Morphological characteristics shown by SEM micrographs exhibit spherical nanoparticles of 30–250 nm in size with agglomerated architectures. Chitosan, a natural polymer which is used to load different drugs, provides sustained and prolonged release of antibiotics at a specific target by possessing antimicrobial activity against gram(+) and gram(−) bacteria. In this research, ceftriaxone-loaded chitosan nanoparticles were investigated as a carrier in antibiotic delivery.


Dose-Response ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 155932582110253
Author(s):  
Aisha Sethi ◽  
Mahmood Ahmad ◽  
Tayyaba Huma ◽  
Ikrima Khalid ◽  
Imtiaz Ahmad

The present study aimed to formulate 5-fluorouracil loaded cross linked chitosan nanoparticles based on chemical cross-linking of low molecular weight chitosan with glutaraldehyde by reverse micelles technique as 5-FU is less hydrophobic, relatively potent, has a shorter half-life, is rapidly metabolized, less tolerated, and has low oral bioavailability; therefore, we aimed to formulate potential nanocarriers of 5-FU for efficient drug delivery to specific targeted areas of action, reduce oral toxicity, improve tolerability and therapeutic outcomes of 5-FU, in a restricted fashion to enhance the bioavailability of 5-FU. Nanoparticles were formulated by the reverse micelle method based on the chemical cross-linking of glutaraldehyde (25% aqueous solution) into a w/o emulsion in different ratios. LMWCH-NPs were characterized for post-formulation parameters by mean particle size, zeta potential, %age yield, loading/entrapment efficiency, Fourier transform infrared spectroscopy (FTIR), DSC/TGA, TEM, PXRD, drug release at pH 1.2, and pH 7.4. 5-FU loaded NPs showed a size range (198 nm-200 nm) and zeta potential (−39mV to −41mV), which ensured mechanical stability and increased retention time in blood vessels by the sustained release properties of biodegradable nanocarrier drug delivery systems. % age yield showed the range 92% to 96% while % LC ranged 2.0% to 3.4% and %EE ranged 40% to 43%. The TEM images showed spherical nanoparticles. FTIR revealed the compatibility between the drug and the cross-linked polymer. DSC/TGA ensured the thermal stability of the drug, while the solid-state stability of the drug-loaded cross-linked chitosan nanoparticles was evaluated by powder X-ray diffraction (PXRD) analysis. Drug release studies were performed using the dialysis bag technique at both pH (1.2 and 7.4) to mimic the gastrointestinal tract. Highly stable NPs displayed targeted release in phosphate buffer pH 7.4 at 37°C. Fickian diffusion was the predominant release with an R2 value of 0.9975-0.9973—and an N value 0.45-0.53. Prepared nanoparticles are inert, biodegradable, and biocompatible drug delivery systems for sustained release of 5-FU with maximum therapeutic efficacy and bioavailability.


2019 ◽  
Vol 16 (4) ◽  
pp. 341-354 ◽  
Author(s):  
Mohammad Nasiri ◽  
Amir Azadi ◽  
Mohammad Reza Saghatchi Zanjani ◽  
Mehrdad Hamidi

Purpose: As an anti-retroviral Protease Inhibitor (PI), Indinavir (IDV) is part of the regimen known as Highly Active Anti-Retroviral Therapy (HAART) widely used for Human Immunodeficiency Virus (HIV) infection. The drug efficiency in treatment of the brain manifestations of HIV is, however, limited which is mainly due to the efflux by P-glycoprotein (P-gp) expressed at the Blood-Brain Barrier (BBB). Methods: To overcome the BBB obstacle, NLCs were used in this study as carriers for IDV, which were optimized through two steps: a “one-factor-at-a-time” screening followed by a systematic multiobjective optimization. Spherical smooth-surfaced Nanoparticles (NPs), average particle size of 161.02±4.8 nm, Poly-Dispersity Index (PDI) of 0.293±0.07, zeta potential of -40.62±2.21 mV, entrapment efficiency of 93±1.58%, and loading capacity of 9.15±0.15% were obtained after optimization which were, collectively, appropriate in terms of the objective of this study. Result: The surface of the optimized NPs was, then, modified with human Transferrin (TR) to improve the drug delivery. The particle size, zeta potential, and PDI of the TR-modified NLCs were 185.29±6.7nm, -28.68±3.37 mV, and 0.247±0.06, respectively. The in vitro release of IDV molecules from the NPs was best fitted to the Weibull model indicating hybrid diffusion/erosion behavior. Conclusion: As the major in vivo findings, compared to the free drug, the NLCs and TR-NLCs displayed significantly higher and augmented concentrations in the brain. In this case, NLC and TR-NLC were 6.5- and 32.75-fold in their values of the brain uptake clearance compared to free drug.


Author(s):  
Baihui Yang

The present investigation aimed at developing Doxorubicin (DOX)-loaded liposome-mediated drug delivery system for head and neck cancer. The liposomes were prepared by film hydration technique using egg phosphatidylcholine and cholesterol using Box-Behnken statistical design. The prepared liposomes were evaluated for the percentage encapsulation efficiency, particle size and in vitro release. The average particle size of the DOX-encapsulating liposomes formulated by thin-film hydration technique was between 150.5 nm and 200 nm with an average particle size of 165.80 nm. The PDI (Polydispersity index) was found to be 0.315 which indicated that particles were monodispersed and narrow-dispersed. In vitro drug release of DOX-loaded liposomes and DOX-loaded peptide-conjugated liposomes was performed in phosphate buffered saline (pH 7.4) and both formulations showed sustained release behavior over the period of 40 hours. The optimized liposomal formulation was conjugated to a peptide and subsequently radiolabeled with 186Re-perrhenate solution and BMEDA-glucoheptonate-stannous chloride solution. Comparative cytotoxicity assay of DOX, DOX-liposomes and DOX-liposomes-peptide on SCC9 cells was performed and it was found that liposomal formulation was not cytotoxic. The antitumor efficacy of 186Re-liposomes, unlabelled liposomes, 186Re-perrhenate solution and 186Re-BMEDA solution was determined in SCC cell lines injected into BALB/c-nu/nu athymic nude rats. The efficacy of antitumor activity was found to be in the following order: peptide-conjugated DOX-loaded liposomes>unlabelled liposomes>186Re-perrhenate solution>186Re-BMEDA solution. The present investigation showed that peptide-conjugated DOX-loaded liposomes significantly suppress the tumor growth in the nude rat model. These results suggest the significant potential of liposomes as carriers for clinical applications in head and neck cancer.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Azariel Díaz-Hernández ◽  
Jorge Gracida ◽  
Blanca E. García-Almendárez ◽  
Carlos Regalado ◽  
Rosario Núñez ◽  
...  

Cross-linking of magnetic nanoparticles with proteins plays a significant role in the preparation of new materials for biotechnological applications. The aim was the maximization of the magnetic mass attracted and protein loading of magnetic iron oxide nanoparticles coated with chitosan, synthesized in a single step by alkaline precipitation. Chitosan-coated magnetite particles (Fe3O4@Chitosan) were cross-linked to a xylanase and a cellulase (Fe3O4@Chitosan@Proteins), showing a 93% of the magnetic saturation of the magnetite. X-ray diffraction pattern in composites corresponds to magnetite. Thermogravimetry and differential scanning calorimetry showed that 162 mg of chitosan was coating one gram of composite and 12 mg of protein was cross-linked to each gram of magnetic support. Cross-linking between enzymes and Fe3O4@Chitosan was confirmed by infrared spectroscopy with Fourier transform, X-ray energy, and X-ray photoelectron spectroscopy dispersion analysis. From dynamic light scattering, transmission and electron microscopy the average particle size distribution was 230 nm and 430 nm for Fe3O4@Chitosan and Fe3O4@Chitosan@Proteins, showing agglomerates of individual spherical particles, with an average diameter of 8.5 nm and 10.8 nm, respectively. The preparation method plays a key role in determining the particle size and shape, size distribution, surface chemistry, and, therefore, the applications of the superparamagnetic nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document