scholarly journals Effect of crop geometry and intercropping systems on growth parameters and yield of baby corn

2021 ◽  
Vol 9 (1) ◽  
pp. 1134-1136
Author(s):  
S Tejaswitha ◽  
AV Nagavani ◽  
V Chandrika ◽  
A Prasanthi ◽  
A Pratap Kumar Reddy
Author(s):  
Mohan Krishnamurthy ◽  
Jeff S. Drucker ◽  
John A. Venablest

Secondary Electron Imaging (SEI) has become a useful mode of studying surfaces in SEM[1] and STEM[2,3] instruments. Samples have been biassed (b-SEI) to provide increased sensitivity to topographic and thin film deposits in ultra high vacuum (UHV)-SEM[1,4]; but this has not generally been done in previous STEM studies. The recently developed UHV-STEM ( codenamed MIDAS) at ASU has efficient collection of secondary electrons using a 'parallelizer' and full sample preparation system[5]. Here we report in-situ deposition and annealing studies on the Ge/Si(100) epitaxial system, and the observation of surface steps on vicinal Si(100) using b-SEI under UHV conditions in MIDAS.Epitaxial crystal growth has previously been studied using SEM and SAM based experiments [4]. The influence of surface defects such as steps on epitaxial growth requires study with high spatial resolution, which we report for the Ge/Si(100) system. Ge grows on Si(100) in the Stranski-Krastonov growth mode wherein it forms pseudomorphic layers for the first 3-4 ML (critical thickness) and beyond which it clusters into islands[6]. In the present experiment, Ge was deposited onto clean Si(100) substrates misoriented 1° and 5° toward <110>. This was done using a mini MBE Knudsen cell at base pressure ~ 5×10-11 mbar and at typical rates of 0.1ML/min (1ML =0.14nm). Depositions just above the critical thickness were done for substrates kept at room temperature, 375°C and 525°C. The R T deposits were annealed at 375°C and 525°C for various times. Detailed studies were done of the initial stages of clustering into very fine (∼1nm) Ge islands and their subsequent coarsening and facetting with longer anneals. From the particle size distributions as a function of time and temperature, useful film growth parameters have been obtained. Fig. 1 shows a b-SE image of Ge island size distribution for a R T deposit and anneal at 525°C. Fig.2(a) shows the distribution for a deposition at 375°C and Fig.2(b) shows at a higher magnification a large facetted island of Ge. Fig.3 shows a distribution of very fine islands from a 525°C deposition. A strong contrast is obtained from these islands which are at most a few ML thick and mottled structure can be seen in the background between the islands, especially in Fig.2(a) and Fig.3.


Author(s):  
Hatice Tunca ◽  
Ali Doğru ◽  
Feray Köçkar ◽  
Burçin Önem ◽  
Tuğba Ongun Sevindik

Azadirachtin (Aza) used as insecticide due to inhibiting growth of insects and preventing them from feeding on plants. To understand the effects of contamination of this insecticide on phototrophs, and to determine the responses of these organisms against these insecticides are extremely important in understanding how the ecosystem is affected. In this study, chlorophyll-a amount, OD 560 and antioxidant parameters (total SOD, APX, GR, Proline, MDA and H2O2) were determined in order to understand the effect of Aza on Arthrospira platensis Gomont. Aza was applied between 0–20 μg mL−1 concentrations for 7 days in the study. Enzyme analysis was conducted at the end of the 7th day. There was a statistically significant decrease in the absorbance of OD560 and the chlorophyll-a content in A. platensis cultures exposed to the Aza (0–20 μg mL−1) during 7 days due to the increase in pesticide levels. SOD activity decreased at 8, 16 and 20 μg mL−1 concentrations; GR enzyme activity showed a significant decrease compared to the control at a concentration of 20 μg mL−1. APX activity did not change significantly compared to control. The MDA content increased significantly at 16 and 20 μg mL−1 concentrations. The H2O2 content significantly increased at 12, 16 and 20 μg mL−1 concentrations (p < 0.05) while the free proline content decreased at 4 μg mL−1 concentration (p < 0.05). As a result, regarding the Aza concentrations used in this study may be a step to prevent pesticide pollution in the environment.


1991 ◽  
Vol 223 ◽  
Author(s):  
Thomas M. Graettinger ◽  
O. Auciello ◽  
M. S. Ameen ◽  
H. N. Al-Shareef ◽  
K. Gifford ◽  
...  

ABSTRACTFerroelectric oxide films have been studied for their potential application as integrated optical materials and nonvolatile memories. Electro-optic properties of potassium niobate (KNbO3) thin films have been measured and the results correlated to the microstructures observed. The growth parameters necessary to obtain single phase perovskite lead zirconate titanate (PZT) thin films are discussed. Hysteresis and fatigue measurements of the PZT films were performed to determine their characteristics for potential memory devices.


1999 ◽  
Vol 17 (1) ◽  
pp. 49-52 ◽  
Author(s):  
Robert H. Stamps ◽  
Michael R. Evans

Abstract A comparison was made of Canadian sphagnum peat (SP) and Philippine coconut (Cocos nucifera L.) coir dust (CD) as growing media components for greenhouse production of Dracaena marginata Bak. and Spathiphyllum Schott ‘Petite’. Three soilless foliage plant growing mixes (Cornell, Hybrid, University of Florida #2 [UF-2]) were prepared using either SP or CD and pine bark (PB), vermiculite (V), and/or perlite (P) in the following ratios (% by vol): Cornell = 50 CD or SP:25 V:25 P, Hybrid = 40 CD or SP:30 V:30 PB, UF-2 = 50 CD or SP: 50 PB. Dracaena root growth was not affected by treatments but there were significant mix × media component interactions that affected plant top growth parameters. In general, the growth and quality of D. marginata were reduced by using CD in Cornell, had no effect in Hybrid, and increased in UF-2. S. ‘Petite’ grew equally well in all growing mixes regardless of whether CD or SP was used; however, plants grew more in Cornell and Hybrid than in UF-2. S. ‘Petite’ roots, which were infested with Cylindrocladium spathiphylli, had higher grades when grown in CD than when the media contained SP.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Piotr Nowak ◽  
Anita Zaworska-Zakrzewska ◽  
Andrzej Frankiewicz ◽  
Małgorzata Kasprowicz-Potocka

AbstractThe rearing of piglets is the most difficult period in the pigs’ production because of their poorly developed digestive system and the low activity of digestive enzymes. Problems in nutrition and stress cause some disorders in the functioning of the digestive system leading to diarrhea and the mortality of piglets. Starting in 2006 in the EU, a total ban on antibiotics in their use as growth promoters was introduced. Since then, new and safe feed additives have been sought in order to replace antibiotics. Organic and inorganic acids as well as their salts were recognized as effective and safe additives. Due to their properties, they can improve feed palatability and digestibility, reduce the buffer capacity of feed, impact the development and functioning of the pig’s digestive system and improve the health and growth parameters. However, the effectiveness of acids is related to their qualitative and quantitative share in the feed additive. In this review, some strategies for using organic acids, their mixtures and also some new multi-component products will be discussed.


2020 ◽  
Vol 13 (2) ◽  
pp. 83-92 ◽  
Author(s):  
A. Adam

SummaryEnhancement of the resistance level in plants by rhizobacteria has been proven in several pathosystems. This study investigated the ability of four rhizobacteria strains (Pseudomonas putida BTP1 and Bacillus subtilis Bs2500, Bs2504 and Bs2508) to promote the growth in three barley genotypes and protect them against Cochliobolus sativus. Our results demonstrated that all tested rhizobacteria strains had a protective effect on barley genotypes Arabi Abiad, Banteng and WI2291. However, P. putida BTP1 and B. subtilis Bs2508 strains were the most effective as they reduced disease incidence by 53 and 38% (mean effect), respectively. On the other hand, there were significant differences among the rhizobacteria-treated genotypes on plant growth parameters, such as wet weight, dry weight, plant height and number of leaves. Pseudomonas putida BTP1 strain was the most effective as it significantly increased plant growth by 15-32%. In addition, the susceptible genotypes Arabi Abiad and WI2291 were the most responsive to rhizobacteria. This means that these genotypes have a high potential for increase of their resistance against the pathogen and enhancement of plant growth after the application of rhizobacteria. Consequently, barley seed treatment with the tested rhizobacteria could be considered as an effective biocontrol method against C. sativus.


Author(s):  
Bent Al-Hoda Asghari ◽  
Mohsen Yousefi ◽  
Katarzyna Możdżeń ◽  
Joanna Puła ◽  
Peiman Zandi ◽  
...  

Indian mustard (Brassica juncea L. Czern) cultivation is suggested for regions with short seasons and low rainfall. Although there have been many studies conducted on agronomic production of mustard in Iran, the information regarding the interactive impact of cropping seasons and nitrogen fertiliser on growth characteristics and yield quality of mustard plant is still insufficient and requires further investigation. This study focused on the possible implications of different cropping seasons and different nitrogen levels on selected agronomic traits in mustard. In this experiment, five different doses of nitrogen and two sowing periods were used to assess for their combined effects on the growth parameters, seed yield and agronomic characteristics of mustard in the semi-arid climatic conditions of Takestan. The results revealed that cultivation seasons and nitrogen rates had a significant effect on plant height, biomass yield, number of siliques per plant, seed oil content and seed yield.


Sign in / Sign up

Export Citation Format

Share Document