scholarly journals Ozonated water antimicrobial efficacy in comparison to antimicrobial activity of different irrigant solutions against E. faecalis and E. coli

2021 ◽  
Vol 7 (3) ◽  
pp. 292-296
Author(s):  
Dr. Vishakha Mittal ◽  
Dr. Akarshak Aggarwal ◽  
Dr. Methili Singhal ◽  
Dr. Manisha Kaushik
2014 ◽  
Vol 2 (4) ◽  
pp. 521-524
Author(s):  
RP Praveen ◽  
Ashalantha Nair

The aim of the present study was to compare the antimicrobial efficacy of methanolic extract of root, callus and fruit of Myxopyrum smilacifolium Blume. Antimicrobial activity was tested using agar well diffusion with four bacterial strains viz: Escherechia coli, Enterococcus faecalis, Bacillus subtilis and Staphylococcus aureus of which E. coli alone was gram negative. The fungal strain employed was Candida albicans. Root extracts shown to be effective only against B. subtilis. Fruit extracts showed the maximum antimicrobial activity against all the microbial species considered for the current study except against S. aureus. Highlight of the present study was the antimicrobial activity of callus extracts. DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11362  Int J Appl Sci Biotechnol, Vol. 2(4): 521-524 


Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 442 ◽  
Author(s):  
Fabio Fontecha-Umaña ◽  
Abel Guillermo Ríos-Castillo ◽  
Carolina Ripolles-Avila ◽  
José Juan Rodríguez-Jerez

Food contact surfaces are primary sources of bacterial contamination in food industry processes. With the objective of preventing bacterial adhesion and biofilm formation on surfaces, this study evaluated the antimicrobial activity of silver (Ag-NPs) and zinc oxide (ZnO-NPs) nanoparticle-containing polyester surfaces (concentration range from 400 ppm to 850 ppm) using two kinds of bacteria, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli), and the prevention of bacterial biofilm formation using the pathogen Listeria monocytogenes. The results of antimicrobial efficacy (reductions ≥ 2 log CFU/cm2) showed that at a concentration of 850 ppm, ZnO-NPs were effective against only E. coli (2.07 log CFU/cm2). However, a concentration of 400 ppm of Ag-NPs was effective against E. coli (4.90 log CFU/cm2) and S. aureus (3.84 log CFU/cm2). Furthermore, a combined concentration of 850 ppm Ag-NPs and 400 ppm ZnO-NPs showed high antimicrobial efficacy against E. coli (5.80 log CFU/cm2) and S. aureus (4.11 log CFU/cm2). The results also showed a high correlation between concentration levels and the bacterial activity of Ag–ZnO-NPs (R2 = 0.97 for S. aureus, and R2 = 0.99 for E. coli). They also showed that unlike individual action, the joint action of Ag-NPs and ZnO-NPs has high antimicrobial efficacy for both types of microorganisms. Moreover, Ag-NPs prevent the biofilm formation of L. monocytogenes in humid conditions of growth at concentrations of 500 ppm. Additional studies under different conditions are needed to test the durability of nanoparticle containing polyester surfaces with antimicrobial properties to optimize their use.


2019 ◽  
Vol 6 ◽  
pp. 113-118 ◽  
Author(s):  
Karuna Neupane ◽  
Rama Khadka

Objectives: To evaluate the enzymatic and antimicrobial efficacy of enzyme from garbage produced from different fruits and vegetable wastes. Methods: This study was conducted from October-2018 to February-2019 in the laboratory of Padma Kanya Multiple College, Bagbazar, Kathmandu, Nepal. This study was carried for production, analysis of enzymatic and antimicrobial efficacy by using yeast (Saccharomyces cerevisae) and bacteria (Bacillus species) in 5 fruits peels, Mosambi (Citrus limetta), Pomegranate (Punica granatum), Pineapple (Ananas comosus), Papaya (Carica papaya) and mixed fruits collected from fresh fruit stall and vegetable peels collected from college’s hostel. The fermentation mixture was made in the ratio 1:3:10 (1 part brown sugar, 3 parts fruits/vegetable peels and 10 parts water) and left for 3 months for fermentation. Results: After fermentation, enzyme activity (amylase, protease, caseinase, cellulase and lipase) and antimicrobial efficacy (S. aureus, S. aureus (ATCC 25923), Bacillus spp, Salmonella Typhi, E. coli, E. coli (ATCC 25922), Shigella spp, Pseudomonas aeruginosa) were analyzed. All the samples showed amylase and caseinase enzyme activity, only Pineapple (Ananascomosus), Papaya (Carica papaya) and Mixed fruit showed protease enzyme activity while only Pomegranate (Punicagranatum) showed lipase enzyme activity. In antimicrobial efficacy test, garbage enzyme produced from vegetable sample didn’t show antimicrobial activity with bacteria used except E. coli (ATCC 25922)and S. aureus (ATCC 25923). Similarly, garbage enzyme produced from Mixed fruit and Papaya (Carica papaya) didn’t show antimicrobial activity with Salmonella Typhi and S. aureus (ATCC 25923) respectively but garbage enzyme from other wastes showed antimicrobial activity with bacteria used in test. Conclusion: Different fruits and vegetables wastes showed different enzyme activity and antimicrobial activity.


2019 ◽  
Vol 2 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Oleksandr Nazarchuk

Under conditions of wide increased resistance of pathogens of infectious complications to antimicrobial agents, a considerable attention is paid to the use of antiseptic drugs. The research of their antimicrobial efficacy remains valid for substantiation of the rational use. The purpose was to carry out a comparative study of the antimicrobial efficacy of medicinal antiseptic agents based on decamethoxine and povidone-iodine. In the study there was examined antimicrobial activity of mentioned antiseptics against 682 clinical strains of microorganisms (A. baumannii, S. aureus, P. aeruginosa, Enterococcus spp., E. coli, Enterobacter spp., K. pneumoniae, Proteus spp.), isolated from patients with infectious complications. Minimum inhibitory and bactericidal concentrations of 1–2– 10 % iodine, 0.02 % decamethoxine (decasan) were determined. Antimicrobial efficacy of medicines, based on studied antiseptics was evaluated with the use of an index of antiseptic activity, calculated by means of commonly used methods. The study revealed high bactericidal properties of decasan against clinical strains of S. aureus, Enterococcus spp., E. coli, K. pneumoniae and Enterobacter spp. The advantages of antimicrobial activity of decamethoxine-based antseptis (decasan, p < 0.001) were proved. Iodine has expressed antimicrobial properties against Enterococcus spp., S. aureus, A. baumannii, bacteria of the Enterobacteriаcеae family and P. aeruginosa. It is proven that the dissolution of povidone-iodine leads to the reduction of the antimicrobial efficacy of 2 % antiseptic solution. There was found inefficacy of 1 % povidone-iodine against infectious agents (p < 0.001). Thus, the leading Gram-positive (S. aureus, Enterococci) and Gram-negative pathogens (Escherichia, Klebsiella, Enterobacteria, Acinetobacteria, Pseudomonas) have a sensitivity to iodine and to domestic preparation based on decamethoxin 0.02 % (decasan), with a definite advantage of the antimicrobial properties of the latter to Gram-positive and some Gram-negative microorganisms (p < 0.001).


2014 ◽  
Vol 2 (19) ◽  
pp. 2855-2860 ◽  
Author(s):  
Iman A. Hassan ◽  
Ivan P. Parkin ◽  
Sean P. Nair ◽  
Claire J. Carmalt

High antimicrobial efficacy of Cu and Cu2O films, deposited via aerosol-assisted chemical vapour deposition, was observed against E. coli and S. aureus.


Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
M Niculae ◽  
CD Sandru ◽  
E Pall ◽  
S Popescu ◽  
L Stan ◽  
...  

Author(s):  
Singh Gurvinder ◽  
Singh Prabhsimran ◽  
Dhawan R. K.

In order to develop new antimicrobial agents, a series of 3-formyl indole based Schiff bases were synthesized by reacting 3-formyl indole(indole-3-carboxaldehyde) with substituted aniline taking ethanol as solvent. The reaction was carried in the presence of small amount of p-toluene sulphonic acid as catalyst.All the synthesized compounds were characterized by IR, 1H-NMR spectral analysis. All the synthesized compounds were evaluated for antimicrobial activity against two gram positive bacterial strains (B. subtilisand S. aureus) and two gram negative bacterial strains (P. aeruginosaand E. coli) and one fungal strain (C. albicans). All the synthesized compounds were found to have moderate to good antimicrobial activity. The  standard drug amoxicillin, fluconazole were used for antimicrobial activity. Among the synthesized compounds, the maximum antimicrobial activity was shown by compounds GS04, GS07, GS08 and GS10.


2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


Author(s):  
Umadevi M ◽  
Rani T ◽  
Balakrishnan T ◽  
Ramanibai R

Nanotechnology has great promise for improving the therapeutic potential of medicinal molecules and related agents. In this study, silver nanoparticles of different sizes were synthesized in an ultrasonic field using the chemical reduction method with sodium borohydride as a reducing agent. The size effect of silver nanoparticles on antimicrobial activity were tested against the microorganisms Staphylococcus aureus (MTCC No. 96), Bacillus subtilis (MTCC No. 441), Streptococcus mutans (MTCC No. 497), Escherichia coli (MTCC No. 739) and Pseudomonas aeruginosa (MTCC No. 1934). The results shows that B. subtilis, and E. coli were more sensitive to silver nanoparticles and its size, indicating the superior antimicrobial efficacy of silver nanoparticles. 


Author(s):  
Vidyasagar G M ◽  
Shankaravva B ◽  
R Begum ◽  
Imrose ◽  
Sagar R ◽  
...  

Microorganisms like fungi, actinomycetes and bacteria are considered nanofactories and are helpful in the production of nanoparticles useful in the welfare of human beings. In the present study, we investigated the production of silver nanoparticles from Streptomyces species JF714876. Extracellular synthesis of silver nanoparticles by Streptomyces species was carried out using two different media. Silver nanoparticles were examined using UV-visible, IR and atomic force microscopy. The size of silver nanoparticles was in the range of 80-100 nm. Antimicrobial activity of silver nanoparticle against bacteria such as E. coli, S. aureus, and dermatophytes like T. rubrum and T. tonsurans was determined. Thus, this study suggests that the Streptomyces sp. JF741876 can produce silver ions that can be used as an antimicrobial substance.


Sign in / Sign up

Export Citation Format

Share Document