scholarly journals Response to dietary supplementation of mixtures of either selected synbiotic, organic acids or essential oils as growth promoters for growing Japanese quails

Author(s):  
A. Safwat ◽  
M. Taher ◽  
M. Bahie El-Deen ◽  
M. Abd El-Naeem
2021 ◽  
Author(s):  
Jiayun Qiao ◽  
Zhiyuan Shang ◽  
Xuejiao Liu ◽  
Kewei Wang ◽  
Zhiwei Wu ◽  
...  

Abstract Background: The emergence and spread of antibiotic resistance genes in pathogenic microorganisms have led to many countries enacting restricted use of antibiotics as growth promoters in animal feed. The combined use of essential oils and organic acids can help maintain intestinal health, improve animal growth performance, and alleviate the negative effects of banned antibiotics for certain economically important animals. However, the modes of action for the combined dietary supplementation of essential oils and organic acids (thymol-citric acid; EOA1, and thymol-butyric acid; EOA2) remain unclear, although it is speculated that their activities are achieved through beneficial modulation of gastrointestinal microbial communities and the inhibition of pathogen growth. In this study, 16S rDNA amplicon sequencing was used to analyze the effects of treatment with EOA1 and EOA2 on the jejunal, cecal, and fecal microbial communities of Cobb broilers (using enramycin and virginiamycin as positive controls) while also evaluating effects over different broiler ages (14, 28, 35, and 42 days old). Results: We found that the intestinal microbial communities of the broilers developed with increasing age, while Lactobacillus gradually came to dominate intestinal communities. Further, the microbial communities of feces were more complex than in the jejuna and ceca. The longitudinal changes in these communities were systematically explored for broilers of different ages. The addition of EOA1 or EOA2 to the diet: 1) inhibited the proliferation of Ralstonia pickettii and Alcaligenaceae in jejuna on the 28th day, 2) promoted the colonization and growth of beneficial bacteria like Lactobacillus, Clostridia, and Bacteroidia at various growth stages, and 3) enriched the abundances of certain microbiota functions including biological pathways related to metabolism (e.g., enzyme families).Conclusions: EOA1 and EOA2 dietary supplementation can affect various microbial metabolic pathways related to the metabolism and absorption of nutrients via the regulation of intestinal microbial community structures of Cobb broilers, while also playing an important role in promoting host growth.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jiayun Qiao ◽  
Zhiyuan Shang ◽  
Xuejiao Liu ◽  
Kewei Wang ◽  
Zhiwei Wu ◽  
...  

The emergence and spread of antibiotic resistance genes in pathogenic microorganisms have resulted in many countries restricting the use of antibiotics as growth promoters in animal feed. The combined use of essential oils and organic acids can help maintain intestinal health, improve animal growth performance, and alleviate the negative effects of banned antibiotics for certain economically important animals. Although the modes of action for the combined dietary supplementation of essential oils and organic acids such as thymol-citric acid (EOA1) and thymol-butyric acid (EOA2) remain unclear, it is speculated that their activities are achieved through beneficial modulation of gastrointestinal microbial communities and inhibition of pathogen growth. In this study, 16S rDNA amplicon sequencing was used to analyze the effects of treatment with EOA1 and EOA2 on the jejunal, cecal, and fecal microbial communities of Cobb broilers while also evaluating effects over different broiler ages. The intestinal microbial communities of broilers developed with increasing age, and Lactobacillus gradually came to dominate the intestinal communities of treated broilers. Further, the microbial communities of feces were more complex than those of the jejuna and ceca. We systematically elucidate that the longitudinal changes in the intestinal microbial communities of Cobb broiler chickens at different ages. Meanwhile, we found that the addition of EOA1 or EOA2 to the diet: (1) inhibited the proliferation of Ralstonia pickettii and Alcaligenaceae in the jejuna on day 28, (2) promoted the colonization and growth of beneficial bacteria such as Lactobacillus, Clostridia, and Bacteroidia at various growth stages, and (3) enriched the abundance of certain microbiota functions, including biological pathways related to metabolism (e.g., enzyme families). Taken together, the results of this study demonstrate that EOA1 and EOA2 dietary supplementation can affect various microbial metabolic pathways related to the metabolism and absorption of nutrients via regulation of the intestinal microbial community structures of Cobb broilers.


2007 ◽  
Vol 2007 ◽  
pp. 200-200
Author(s):  
T. Steiner ◽  
C. Lückstädt

Intensive research has been directed to the potential of Natural Growth Promoters (NGPs) to replace antibiotics. Phytogenics and organic acids (OA) have been shown to be effective in reducing the incidence of gastrointestinal disorders, thereby improving growth performance in pigs (Steiner, 2006). The addition of OA to nonruminant diets is supposed to have beneficial effects on feed safety since OA have a detrimental impact on moulds and other feed contaminants. Moreover, due to a decrease in gastric pH, acidification of the diets creates favourable conditions for nutrient digestibility, especially in young piglets (Radcliffe et al., 1998). Dietary supplementation with essential oils originating from aromatic plants may directly affect the intestinal microflora, both in quantitative and qualitative terms. As shown under in vitro (Helander et al., 1998) and in vivo conditions (Kroismayr et al., 2005), oregano essential oils have strong antimicrobial properties. Finally, it has been confirmed that addition of fructooligosaccharides (FOS) to diets for nonruminants may stabilize the gut microflora by selectively supporting the growth of beneficial bacteria (Macfarlane et al., 2006). Depending on individual farm conditions, a well-adjusted combination of different strategies is supposed to maximize the efficacy of NGPs in antibiotic-free feeding systems. The aim of the trial was to investigate the effects of phytogenics and OA alone and in combination in comparison with a commercial diet containing no additives.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4664
Author(s):  
Majid Mohammadhosseini ◽  
Alessandro Venditti ◽  
Claudio Frezza ◽  
Mauro Serafini ◽  
Armandodoriano Bianco ◽  
...  

Herein, a comprehensive review is given focusing on the chemical profiles of the essential oils (EOs), non-volatile compounds, ethnobotany, and biological activities of different Haplophyllum (Rutaceae family) species. To gather the relevant data, all the scientific databases, including Scopus, ISI-WOS (Institute of Scientific Information-Web of Science), and PubMed and highly esteemed publishers such as Elsevier, Springer, Taylor and Francis, etc., were systematically retrieved and reviewed. A wide array of valuable groups of natural compounds, e.g., terpenoids, coumarins, alkaloids, lignans, flavonoids, and organic acids have been isolated and subsequently characterized in different organic extracts of a number of Haplophyllum species. In addition, some remarkable antimicrobial, antifungal, anti-inflammatory, anticancer, cytotoxic, antileishmanial, and antialgal effects as well as promising remedial therapeutic properties have been well-documented for some species of the genus Haplophyllum.


2015 ◽  
Author(s):  
Najmeh Karimi* ◽  
Y. Jafari Ahangari ◽  
S. Zerehdaran ◽  
A. Akhlaghi ◽  
S.R. Hashemi ◽  
...  

2019 ◽  
Vol 59 (7) ◽  
pp. 1318 ◽  
Author(s):  
Ayman S. Salah ◽  
Mahmoud S. El-Tarabany ◽  
Mohamed A. Ali

The objective was to explore the possible impacts of dietary supplementation with a synbiotic, organic acids or their combination on the growing efficiency, carcass traits and some blood constituents in broilers. In total, 160 1-day-old male broilers (Ross 308) were randomly assigned into four equal groups (40 birds with 8 replicates). The control group received the basal diet with no supplements, while diets of the treated groups were supplemented with organic acids (OA; 1 g/kg), a synbiotic (S; 1 g/kg) and an equal mix of OA and the synbiotic (OS; 2 g/kg). The dietary supplementation with OA decreased the feed intake (P = 0.011) and bodyweight gain (P = 0.011) when compared with other experimental groups. However, the dietary supplementation with the synbiotic plus OA resulted in a considerable improvement in the overall feed conversion rate when compared with the control and OA-supplemented groups (P = 0.001). Groups fed the diets supplemented with the synbiotic or the synbiotic plus OA showed significantly higher net profits and the profit to cost ratio than did the CON and OA-supplemented groups (P = 0.010 and 0.005 respectively). Birds in the S and OS groups had a significantly higher jejunum villus height (P = 0.001), and carcass (P = 0.012) and breast meat (P = 0.001) yields than did those in the control and OA groups. However, the synbiotic-supplemented group produced significantly lower abdominal fat percentage (P = 0.021). The dietary supplementation with the synbiotic or the synbiotic plus OA decreased the lymphocyte counts (P = 0.003) and the serum reduced glutathione concentration (P = 0.001), but significantly decreased the heterophil to lymphocyte ratio (P = 0.001), and the serum cholesterol (P = 0.014) and oxidised glutathione (P = 0.002) concentrations compared with the control and OA-supplemented groups. The present findings showed that dietary supplementation with a synbiotic or a synbiotic plus OA can improve the growth performance, carcass traits, serum antioxidant activity and blood-related indices in broilers.


Aquaculture ◽  
2011 ◽  
Vol 321 (3-4) ◽  
pp. 245-251 ◽  
Author(s):  
Neill Jurgens Goosen ◽  
Johann Ferdinand Görgens ◽  
Lourens Francois De Wet ◽  
Hafizah Chenia

2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
P. Janczyk ◽  
R. Pieper ◽  
V. Urubschurov ◽  
K. R. Wendler ◽  
W. B. Souffrant

Essential oils (EO) are being considered as possible alternatives to in-feed antibiotic growth promoters in pig nutrition. The effects of an EO mixture consisting of limonene, eugenol and pinene (10.0, 2.0, and 4.8 mg/kg diet, resp.) on gut physiology and ecology were studied in piglets. The experiment was conducted at low (commercial farm) and high hygienic conditions (experimental farm), to elucidate interactions between EO supplementation and husbandry methods. Piglets were weaned at 28 days of age, when they were offered either a control diet (C) or C with EO. Four piglets were sacrificed in each group on day 29, 30, 33 and 39. Digesta from the third distal part of the small intestine and from the colon were sampled and analysed for pH, dry matter, lactic acid, short chain fatty acids and ammonia concentrations. Enterobacteria, enterococci, lactobacilli and yeast counts were obtained by plating. Genomic DNA was extracted from digesta and polymerase chain reaction—denaturing gradient gel electrophoresis was performed. Individual microbial communities were identified at each farm. Age affected the intestinal parameters. No effects of the EO with exception for a significant reduction in colon bacterial diversity at 39 days of age could be recorded at experimental farm.


Sign in / Sign up

Export Citation Format

Share Document