scholarly journals Development and use of synanthropic phytocenoses with complex invasion in Kaluga region

2019 ◽  
Vol 14 (2) ◽  
pp. 114-122
Author(s):  
Valeriy Anatolyevich Burlutskiy ◽  
Vladimir Nikolaevich Mazurov ◽  
Ivan Evgenievich Osokin ◽  
Aleksandr Fedorovich Peliy ◽  
Polina Sergeevna Semeshkina ◽  
...  

Currently, less than 33% of arable land is used in Meshchovskoye Opolye. Optimizing technology elements of resource-saving development of synanthropic fallow phytocenoses with complex invasion is relevant. The article is devoted to analysis of development of self-organizing phytocenoses with varying invasion degrees and their use on lands temporarily withdrawn from active agricultural use. Field experiments were carried out on postagrogenic gray forest loamy soils in Kaluga Research Institute of Agriculture in 2006-2018. Influence of mineral fertilizers as an optimization element of technology of fallow development was studied using transects and permanent survey sites on the area of 12.0 ha. The reasons for change in productivity and its determining elements in hayfields in autogenous - allogenic phytocenoses were analysed. We established that economic value of plant communities was determined by potential of constituent species and variability of their productivity in years with various environmental conditions. 12 years later phytocenoses become homogeneous and consist of 10-12 main plant species, determining green mass productivity by 75%. Compared to native species invasive plant species have 1.4-2.0 fold higher productivity which accounts for 60% and more productivity of phytocenoses. Transforming role of Erigeron canadensis L., Lupinus polyphyllus Lindl. and Solidago gigantea Ait. on their expansion into aboriginal herb (share in mowed mass - 40% or more) communities was shown; their high adaptive potential for ecological-soil conditions of Meshchovskoye Opolye (center of Nonchernozem Zone of Russia) was established. Application of mineral fertilizers (P40K90) in the secondary Trifolium medium phytocenoses (more than 40%) contributed to 2.4-fold increase in its productivity (from 1.38 to 3.29 kg/m2) and increased productivity stability by 60%, reducing low-value species in crop structure by 1.6 times. The total area of cenopopulations increased by 10.4-21.5%, yields - from 2.31 to 4.41 kg/m2.

Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 813
Author(s):  
Ian Sexton ◽  
Philip Turk ◽  
Lindsay Ringer ◽  
Cynthia S. Brown

The accumulation of live and dead trees and other vegetation in forests across the western United States is producing larger and more severe wildfires. To decrease wildfire severity and increase forest resilience, foresters regularly remove excess fuel by burning woody material in piles. This common practice could also cause persistent ecosystem changes such as the alteration of soil physical and chemical properties due to extreme soil heating, which can favor invasion by non-native plant species. The abundance and species richness of native plant communities may also remain depressed for many years after burning has removed vegetation and diminished propagules in the soil. This adds to the vulnerability of burned areas to the colonization and dominance by invasive species. Research into the use of revegetation techniques following pile burning to suppress invasion is limited. Studies conducted in various woodland types that investigated revegetation of pile burn scars have met with varying success. To assess the effectiveness of restoring pile burn scars in Rocky Mountain National Park, Colorado, we monitored vegetation in 26 scars, each about 5 m in diameter, the growing season after burning. Later that summer, we selected 14 scars for restoration that included soil scarification, seed addition, and pine duff mulch cover. We monitored the scars for four years, pre-restoration, and three years post-restoration and found that the cover of seeded species exceeded the surrounding unburned areas and unseeded controls. The restoration seeding suppressed cover of non-native species as well as native species that were not seeded during restoration. Our results suggest that restoration of pile burn scars could be a useful tool to retard the establishment of invasive plant species when there are pre-existing infestations near scars. However, this must be weighed against the simultaneous suppression of native species recruitment. Monitoring for periods more than three years will help us understand how long the suppression of native and non-native species by restoration species may persist.


AoB Plants ◽  
2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Betsy von Holle ◽  
Sören E Weber ◽  
David M Nickerson

Abstract Plant species ranges are expected to shift in response to climate change, however, it is unclear how species interactions will affect range shifts. Because of the potential for enemy release of invasive nonnative plant species from species-specific soil pathogens, invasive plants may be able to shift ranges more readily than native plant species. Additionally, changing climatic conditions may alter soil microbial functioning, affecting plant–microbe interactions. We evaluated the effects of site, plant–soil microbe interactions, altered climate, and their interactions on the growth and germination of three congeneric shrub species, two native to southern and central Florida (Eugenia foetida and E. axillaris), and one nonnative invasive from south America (E. uniflora). We measured germination and biomass for these plant species in growth chambers grown under live and sterile soils from two sites within their current range, and one site in their expected range, simulating current (2010) and predicted future (2050) spring growing season temperatures in the new range. Soil microbes (microscopic bacteria, fungi, viruses and other organisms) had a net negative effect on the invasive plant, E. uniflora, across all sites and temperature treatments. This negative response to soil microbes suggests that E. uniflora’s invasive success and potential for range expansion are due to other contributing factors, e.g. higher germination and growth relative to native Eugenia. The effect of soil microbes on the native species depended on the geographic provenance of the microbes, and this may influence range expansion of these native species.


Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 241 ◽  
Author(s):  
Jana Jurová ◽  
Martina Matoušková ◽  
Anna Wajs-Bonikowska ◽  
Danuta Kalemba ◽  
Marek Renčo ◽  
...  

Impatiens parviflora is non-native invasive plant species occupying large areas all over the Europe and threatens native communities by altering their species composition and reducing native biodiversity. The factor responsible for its spreading could be explained by releasing biochemical to the environment. On the other hands, high demand on secondary metabolites as potential source of new ecofriendly biocides could be beneficial. The analysis of I. parviflora essential oil (EO) led us to identify more than 60 volatiles. The main compound was hexahydrofarnesyl acetone, other dominant components were phytol, carvacrol, germacra-4(15),5,10(14)-trien-1-α-ol, and pentacosane. The potential phytotoxic effect of I. parviflora EO collected in two vegetation periods (summer and autumn) was evaluated on seed germination and root elongation of three dicot species (Raphanus sativus, Lepidum sativum, and Lactuca sativa) and on one monocot species (Triticum aestivum). The seed germination of only one dicot species, L. sativa, was affected by both EOs. In contrast, seed germination of monocot species T. aestivum was influenced only by the highest doses of EOs isolated from I. parviflora in autumn. The root elongation of tested plant species was less influenced by I. parviflora EOs. L. sativum showed sensitivity to one dose of EOs hydrodistilled in summer, while the monocot species was influenced by both EOs samples in highest doses. Our findings revealed that I. parviflora contained phenolics that were phytotoxic to the germination of some plant species, mainly at higher EOs doses, while root elongation of tested plants was not suppressed by essential oils.


Botany ◽  
2016 ◽  
Vol 94 (6) ◽  
pp. 481-491 ◽  
Author(s):  
Catherine A. Gehring ◽  
Michaela Hayer ◽  
Lluvia Flores-Rentería ◽  
Andrew F. Krohn ◽  
Egbert Schwartz ◽  
...  

Invasive, non-native plant species can alter soil microbial communities in ways that contribute to their persistence. While most studies emphasize mycorrhizal fungi, invasive plants also may influence communities of dark septate fungi (DSF), which are common root endophytes that can function like mycorrhizas. We tested the hypothesis that a widespread invasive plant in the western United States, cheatgrass (Bromus tectorum L.), influenced the abundance and community composition of DSF by examining the roots and rhizosphere soils of cheatgrass and two native plant species in cheatgrass-invaded and noninvaded areas of sagebrush steppe. We focused on cheatgrass because it is negatively affected by mycorrhizal fungi and colonized by DSF. We found that DSF root colonization and operational taxonomic unit (OTU) richness were significantly higher in sagebrush (Artemisia tridentata Nutt.) and rice grass (Achnatherum hymenoides (Roem. & Schult.) Barkworth) from invaded areas than noninvaded areas. Cheatgrass roots had similar levels of DSF colonization and OTU richness as native plants. The community composition of DSF varied with invasion in the roots and soils of native species and among the roots of the three plant species in the invaded areas. The substantial changes in DSF we observed following cheatgrass invasion argue for comparative studies of DSF function in native and non-native plant species.


2006 ◽  
Vol 28 (1) ◽  
pp. 27 ◽  
Author(s):  
A. C. Grice

Most parts of the Australian rangelands are at risk of invasion by one or more species of non-native plants. The severity of current problems varies greatly across the rangelands with more non-native plant species in more intensively settled regions, in climatic zones that have higher and more reliable rainfall, and in wetter and more fertile parts of rangeland landscapes. Although there is quantitative evidence of impacts on either particular taxonomic groups or specific ecological processes in Australian rangelands, a comprehensive picture of responses of rangeland ecosystems to plant invasions is not available. Research has been focused on invasive species that are perceived to have important effects. This is likely to down play the significance of species that have visually less dramatic influences and ignore the possibility that some species could invade and yet have negligible consequences. It is conceivable that most of the overall impact will come from a relatively small proportion of invasive species. Impacts have most commonly been assessed in terms of plant species richness or the abundance of certain groups of vertebrates to the almost complete exclusion of other faunal groups. All scientific studies of the impacts of invasive species in Australian rangelands have focused on the effects of individual invasive species although in many situations native communities are under threat from a complex of interacting weed species. Invasion by non-native species is generally associated with declines in native plant species richness, but faunal responses are more complex and individual invasions may be associated with increase, decrease and no-change scenarios for different faunal groups. Some invasive species may remain minor components of the vegetation that they invade while others completely dominate one stratum or the vegetation overall.


AoB Plants ◽  
2019 ◽  
Vol 11 (5) ◽  
Author(s):  
Franz Essl ◽  
Wayne Dawson ◽  
Holger Kreft ◽  
Jan Pergl ◽  
Petr Pyšek ◽  
...  

Abstract Biological invasions are a defining feature of the Anthropocene, but the factors that determine the spatially uneven distribution of alien plant species are still poorly understood. Here, we present the first global analysis of the effects of biogeographic factors, the physical environment and socio-economy on the richness of naturalized and invasive alien plants. We used generalized linear mixed-effects models and variation partitioning to disentangle the relative importance of individual factors, and, more broadly, of biogeography, physical environment and socio-economy. As measures of the magnitude of permanent anthropogenic additions to the regional species pool and of species with negative environmental impacts, we calculated the relative richness of naturalized (= RRN) and invasive (= RRI) alien plant species numbers adjusted for the number of native species in 838 terrestrial regions. Socio-economic factors (per-capita gross domestic product (GDP), population density, proportion of agricultural land) were more important in explaining RRI (~50 % of the explained variation) than RRN (~40 %). Warm-temperate and (sub)tropical regions have higher RRN than tropical or cooler regions. We found that socio-economic pressures are more relevant for invasive than for naturalized species richness. The expectation that the southern hemisphere is more invaded than the northern hemisphere was confirmed only for RRN on islands, but not for mainland regions nor for RRI. On average, islands have ~6-fold RRN, and >3-fold RRI compared to mainland regions. Eighty-two islands (=26 % of all islands) harbour more naturalized alien than native plants. Our findings challenge the widely held expectation that socio-economic pressures are more relevant for plant naturalization than for invasive plants. To meet international biodiversity targets and halt the detrimental consequences of plant invasions, it is essential to disrupt the connection between socio-economic development and plant invasions by improving pathway management, early detection and rapid response.


Diversity ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 217
Author(s):  
Manya Singh ◽  
Wallace M. Meyer

Changes in plant assemblages can influence biotic and abiotic soil conditions. These changes can cause plant–soil feedbacks that can inhibit or facilitate plant germination and growth. Here, we contribute to a growing literature examining plant–soil feedbacks in the endangered sage scrub ecosystem by examining the germination and growth of Artemisia californica, the dominant native shrub species in the ecosystem, in soil conditioned by two widespread plant invaders (Brassica nigra, Bromus madritensis ssp. rubens), and the germination and growth of these invasive species in conspecific and heterospecific soils. Our findings suggest that: (i) A. californica soils can limit establishment of some species (B. nigra) but not others (B. madritensis), (ii) A. californica soil conditions reduce growth of all plant species, and (iii) non-natives are negatively impacted by soil microbes, but in some contexts can do better in heterospecific soil. As our findings were often incongruent with other studies that examined interactions among similar species at other sites, we suggest that we are at our infancy of understanding these complex interactions, and that developing a predictive framework for understanding plant soil feedbacks in the sage scrub ecosystem involves understanding how various plant species respond in different soil contexts within the ecosystem.


2021 ◽  
Author(s):  
Antonia Capotorto

It is generally assumed that increased plant biodiversity will enhance the efficiency and effectiveness of the pollutant removal processes in wetlands constructed for stormwater management and will provide ancillary benefits for wildlife and the general public. However, the development of a diverse plant community may be jeopardized by colonization by invasive species. This study reports on a detailed assessment of the changes in plant species composition in a wetland complex constructed for stormwater management in Markham, Ontario, Canada. The research presented focuses on the relationship between the presence of invasive species, the lack of development of native species diversity, and the environmental factors that may be associated with the presence and distribution of invasive plants. Today, vegetation diversity of the wetland remains extremely poor and there has been significant establishment of invasive species, especially Typha angustifolia. Despite the complexity of the site, there are few environmental determinants for plant growth.


2018 ◽  
Vol 12 (4) ◽  
pp. 54-60
Author(s):  
Рафил Шакиров ◽  
Rafil Shakirov ◽  
Закиржан Бикмухаметов ◽  
Zakirzhan Bikmuhametov ◽  
Фидаил Хисамиев ◽  
...  

Complex studies were conducted in eight-field grain-steam-crop and grain-steam-tilled crop rotations using the following terms: fertilizer systems, plant protection, basic tillage methods and plastic varieties. Scientific novelty lies in the fact that for the first time in the forest-steppe of the Volga region, on a systemic basis, resource-saving technologies have been developed on the basis of fertile crop rotations in an ecologically balanced, biologized farming system. Agroecological principles of conservation and reproduction of gray forest soil fertility and obtaining a planned harvest of high quality. Experimental substantiation of the role of action and interaction of the main factors of saving technology, in increasing crop productivity of crop rotations, productivity of arable land and soil fertility. Agroeconomic evaluation of the resource-saving technology effectiveness. Crop rotations of leguminous crops and perennial legumes increase the productivity of arable land to 15-20%, provide a positive balance of humus (0.45-0.5 tons per hectare). Organomineralic fertilizer system reduces the need for mineral fertilizers by 2-3 times, ensures the receipt of planned high quality harvest and reproduction of soil fertility. The integrated plant protection system, using biological means and methods, provides a saving of plant protection products to 30-35%, raises productivity to 15-25%. Moisture-resource-saving mode of soil cultivation (mulching various deep loosening without turnover of beds) allows to save 25-35% of fuel and reduce the moisture loss to 35-40%. Complex application of these factors with the use of high-yielding plastic varieties makes resource-saving technology that increases the productivity of cultivated crops and the productivity of arable land by 1.5-2 times, the profitability of production by 30-50% and ensuring the reproduction of soil fertility.


Author(s):  
Dmitriy Pavlovich Polyakov ◽  
Andrey Vladimirovich Tyutyuma

Light-chestnut soils of the arid zone of the North of the Astrakhan region, even if all the standards of agricultural engineering are observed, are characterized by unfavorable agrochemical and water-physical properties for most crops. To successfully solve the problems associated with increasing adaptation of zonal agriculture to harsh climate conditions, it is necessary to search for new resource-saving technologies. The purpose of the work is to identify the impact of resource-saving methods of basic soil cultivation on the yield of spring barley in the semi-desert conditions of the North of the Astrakhan region. The organization of field experiments, observations and laboratory analyses were carried out according to the method of conducting field experiments Dospekhov B. A. and Guidelines for conducting field experiments with forage crops (research Institute of feed). The results of the conducted field experiments and laboratory studies give reason to speak about the feasibility of using a resource-saving soil-cultivating organ ROPA in the zone of unstable moisture in the North of the Astrakhan region. Loosening this unit contributes to an increase of 25% of the total spring stock of soil moisture. The introduction of this deep tillage (H=0.40-0.45 m) and tools for its implementation (ROPA) allows you to get in the rain-fed conditions of the arid zone of the North of the Astrakhan region from one hectare of arable land to 1.24 tons of barley Vakula and 1.30 tons of barley Ratnik.


Sign in / Sign up

Export Citation Format

Share Document