Development of ground networks for high authenticity prediction of landslide processes

2018 ◽  
Vol 931 (1) ◽  
pp. 39-42
Author(s):  
J.T. Mehdiyev ◽  
N.Yu. Litvinov

Landslides are the geological event, which lead to huge losses yearly in the scale of whole planet. Landslides are the spatial dynamic process and can develop during the long time period. Because that all control point type measurements in the field should be carried out at the sufficiently large area. At the present time the empirical GIS based models of landslides allow to estimate the potential of landslide occurrence. At the same time there are the technologies of wireless networks realized as technical systems making it possible to found and predict the landslides. Such systems are composed of distributed on area colons of tenzometric sensors with acoustic output signal and generator of start radio signal. The necessary condition for utilization of these signals is presence in them of identification signatures which leads to complication of technical system and increase the background noise level. The suggested alternative variant for development of prediction system make it possible not to form and emit the big numberof radio signals with identification signatures which promote for decrease the level of background noise signal.

Author(s):  
V. M. Kosolapov ◽  
N. N. Kozlov ◽  
I. А. Klimenko ◽  
V. N. Zolotarev

The methods of genetic identification of forage crops varieties and forms have significant scientific and practical importance in breeding and seed multiplication, in protection of author’s rights. At the current moment molecular markers on the base of DNA-polymorphism have been applied widely for these aims. This analytical review examines the possibilities and the prospects of application the different DNA-analysis methods for assessment of forage crops genetic diversity and for development the molecular-genetic passports of breeding achievements. The objective estimation of varieties structure and presence impurities is a necessary condition for improving the methodical approaches in approbation of crops and for decision the problems of timely variety-seed renovation and its systematic replacement. The system of DNA markers that registered in genetic passport will enable to keep the initial genetic structure of variety and to maintain it in production process during long time without fluctuations of agronomic important characteristics and properties. This factor is especially valuable for development the primary seed multiplication.


2018 ◽  
Vol 45 (1) ◽  
pp. 173-184 ◽  
Author(s):  
Katarzyna Łuszczyńska ◽  
Małgorzata Wistuba ◽  
Ireneusz Malik ◽  
Marek Krąpiec ◽  
Bartłomiej Szypuła

Abstract Most landslide hazard maps are developed on the basis of an area’s susceptibility to a landslide occurrence, but dendrochronological techniques allows one to develop maps based on past landslide activity. The aim of the study was to use dendrochronological techniques to develop a landslide hazard map for a large area, covering 3.75 km2. We collected cores from 131 trees growing on 46 sampling sites, measured tree-ring width, and dated growth eccentricity events (which occur when tree rings of different widths are formed on opposite sides of a trunk), recording the landslide events which had occurred over the previous several dozen years. Then, the number of landslide events per decade was calculated at every sampling site. We interpolated the values obtained, added layers with houses and roads, and developed a landslide hazard map. The map highlights areas which are potentially safe for existing buildings, roads and future development. The main advantage of a landslide hazard map developed on the basis of dendrochronological data is the possibility of acquiring long series of data on landslide activity over large areas at a relatively low cost. The main disadvantage is that the results obtained relate to the measurement of anatomical changes and the macroscopic characteristics of the ring structure occurring in the wood of tilted trees, and these factors merely provide indirect information about the time of the landslide event occurrence.


2020 ◽  
Vol 50 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Igor Christo MIYAHIRA ◽  
Maria Cristina Dreher MANSUR ◽  
Daniel Mansur PIMPÃO ◽  
Sheyla Regina Marques COUCEIRO ◽  
Sonia Barbosa dos SANTOS

ABSTRACT Diplodon granosus was one of the first freshwater mussels to be described for South America. However, the status of the species was confusing for a long time, receiving different taxonomic treatments. In this paper, we redescribe the shell, with new data on the soft parts and information on the distribution and conservation of D. granosus, a rarely recorded species. The shell is thin, not inflated; the macrosculpture is composed only by granules that cover the whole shell, not forming bars; the microsculpture comprises short spikes. In the soft parts we highlight the few, weak and irregularly distributed lamellar connections of the outer demibranch and some features of the stomach, such as the distally enlarged minor typhlosole. There are records of D. granosus over a large area of South America, from Guiana to Argentina. However, most of these records are related to other species and the distribution of D. granosus is restricted to the north of South America in the basins of the Amazonas and Orinoco rivers, and coastal rivers in between. Despite this wide distribution, the species occurs in specific habitats, mainly streams (igarapés), resulting in an extremely fragmented occurrence. Thus, any disturbance to these habitats can threat this freshwater mussel.


2014 ◽  
Vol 2014 ◽  
Author(s):  
Nicolas Turenne

Text data is often seen as "take-away" materials with little noise and easy to process information. Main questions are how to get data and transform them into a good document format. But data can be sensitive to noise oftenly called ambiguities. Ambiguities are aware from a long time, mainly because polysemy is obvious in language and context is required to remove uncertainty. I claim in this paper that syntactic context is not suffisant to improve interpretation. In this paper I try to explain that firstly noise can come from natural data themselves, even involving high technology, secondly texts, seen as verified but meaningless, can spoil content of a corpus; it may lead to contradictions and background noise.


Author(s):  
Oleksandr Shefer ◽  
Vitalii Marchenko ◽  
Galina Cherneva

In terms of active and passive electronic counteraction, detection of geophysical phenomena of artificial andnatural origin is becoming increasingly important. Discovering new properties of plasma enables to improve the informationcomponent of radio signals more effectively and use the obtained properties in related fields. Elementary processes in thelongitudinal and transverse directions of the discharge, depending on natural and artificial conditions, under different typesof gaseous medium used; at different gas pressures and different pulse-periodic application of an electric field is studied inthe article. The difference of discharge properties in inert and molecular gases with different designs and electrodes of thelaboratory device is shown. It is established that the change of functional purpose between the cathodes and the anodes doesnot change the shape of the discharge. The presence of ambipolar diffusion of charge carriers acting on a large area of plasmawas determined. Partial charge carrier homogeneity has been established, which is observed only along the plasma surface,and homogeneity is violated in the perpendicular direction. The difference in energy input in the discharge, depending on thedesign of the electrodes other things being equal is determined. The identified properties of plasma enable them to be usedmore effectively for practical implementation in the field of electronics and telecommunications and other industries.


2020 ◽  
Vol 192 (1) ◽  
pp. 14-26
Author(s):  
A M Sadek

Abstract The purpose of the current work is to investigate the effect of the scatter data and the background noise level on the uncertainty of the thermoluminescence (TL) measurements. The Monte-Carlo (MC) algorithm has been used to simulate the scattering data and the background noise signal in TL glow-curve. Under the simulation and experimental parameters used in the present study, a new general criterion for the minimum measurable dose has been established. It has been found from the results that the TL measurements, using either the peak maximum or the peak integral, can be conducted with an uncertainty level $<\pm 10\%[2\sigma ]$ when the TL signal is at least 10 times greater than the background noise signal. It has also been found that the same criterion can be used for the evaluation of the kinetics parameters of the TL glow-peak using either the peak fitting or the peak shape methods.


1997 ◽  
Vol 488 ◽  
Author(s):  
Aldo E. Job ◽  
JosÉ A. Giacomett ◽  
Luiz H. C. Mattoso

AbstractIt is well known that conductive polyaniline (PANI) films are usually doped by immersing dedoped PANI films in HCI solution. This paper shows that a corona discharge can be successfully employed to dope thin films of polyaniline coated on poly (ethylene terephthalate) films. Similarly to the conventional doping with aqueous HCl the process is accompanied by a color change from blue to green and the conductivity can be tuned in the range from 10−10 up to 0.3 Scm−1. Such new doping method presents several advantages over the conventional one namely, dry process, use of no chemicals, rapidity and no dopant migration. Measurements also showed that the conductivity persists for a long time as observed for films prepared in chemical solution doping. It is believed that this novel technique could be employed in a continuous doping process aiming to produce films with large area for anti electrostatic packing applications.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1092
Author(s):  
Fengqi Xiao ◽  
Fei Yuan ◽  
En Cheng

The GF-4 geosynchronous orbit satellite can observe a large area for a long time, but the unique characteristics of its optical remote sensing image restrict the detection of maritime targets. This paper proposes a maritime target detection and tracking method for the GF-4 satellite image sequence based on the differences in information between frames in the image sequence. First, a preprocessing method is proposed for the unique characteristics of the image. Then, the ViBe (Visual Background Extractor) algorithm is used to extract the targets in the image sequence. After detection, the DCF-CSR (discriminative correlation filters with channel and spatial reliability) is used as a tracker to track and correlate the detected target to complete the task of predicting and monitoring the targets’ movements. Finally, through the comparative analysis of experiments with several classic methods, the feasibility and effectiveness of this method are verified.


2019 ◽  
Vol 867 ◽  
pp. 804-834 ◽  
Author(s):  
Eduardo Martini ◽  
André V. G. Cavalieri ◽  
Peter Jordan

Motivated by recent studies that have revealed the existence of trapped acoustic waves in subsonic jets (Towne et al., J. Fluid Mech., vol. 825, 2017, pp. 1113–1152), we undertake a more general exploration of the physics associated with acoustic modes in jets and wakes, using a double vortex-sheet model. These acoustic modes are associated with eigenvalues of the vortex-sheet dispersion relation; they are discrete modes, guided by the vortex sheet; they may be either propagative or evanescent; and under certain conditions they behave in the manner of acoustic-duct modes. By analysing these modes we show how jets and wakes may both behave as waveguides under certain conditions, emulating ducts with soft or hard walls, with the vortex-sheet impedance providing effective ‘wall’ conditions. We consider, in particular, the role that upstream-travelling acoustic modes play in the dispersion-relation saddle points that underpin the onset of absolute instability. The analysis illustrates how departure from duct-like behaviour is a necessary condition for absolute instability, and this provides a new perspective on the stabilising and destabilising effects of reverse flow, temperature ratio and compressibility; it also clarifies the differing symmetries of jet (symmetric) and wake (antisymmetric) instabilities. An energy balance, based on the vortex-sheet impedance, is used to determine stability conditions for the acoustic modes: these may become unstable in supersonic flow due to an energy influx through the shear layers. Finally, we construct the impulse response of flows with zero and finite shear-layer thickness. This allows us to show how the long-time wavepacket behaviour is indeed determined by interaction between Kelvin–Helmholtz and acoustic modes.


2020 ◽  
Author(s):  
Sigrid Roessner ◽  
Robert Behling ◽  
Mahdi Motagh ◽  
Hans Ulrich-wetzel

<p>Landslides represent a worldwide natural hazard and often occur as cascading effects related to triggering events, such as earthquakes and hydrometeorological extremes. Recent examples are the Kaikoura earthquake in New Zealand (November 2016), the Gorkha earthquake in Nepal (April/May 2015), and the Typhoon Morakot in Taiwan (August 2009) as well as less intense rainfall events persisting over unusually long periods of time as observed for Central Asia (spring 2017) and Iran (spring 2019). Each of these events has caused thousands of landslides that account substantially to the primary disaster’s impact. Moreover, their initial failure usually represents the onset of long-term progressing slope destabilization leading to multiple reactivations and thus to long-term increased hazard and risk. Therefore, regular systematic high-resolution monitoring of landslide prone regions is of key importance for characterization, understanding and modelling of spatiotemporal landslide evolution in the context of different triggering and predisposing settings. Because of the large extent of the affected areas of up to several ten thousands km<sup>2</sup>, the use of multi-temporal and multi-scale remote sensing methods is of key importance for large area process analysis. In this context, new opportunities have opened up with the increasing availability of satellite remote sensing data of suitable spatial and temporal resolution (Sentinels, Planet) as well as the advances in UAV based very high resolution monitoring and mapping.</p><p>During the last decade, we have been pursuing extensive methodological developments in remote sensing based time series analysis including optical and radar observations with the goal of performing large area and at the same time detailed spatiotemporal analysis of landslide prone regions. These developments include automated post-failure landslide detection and mapping as well as assessment of the kinematics of pre- and post-failure slope evolution.  Our combined optical and radar remote sensing approaches aim at an improved understanding of spatiotemporal dynamics and complexities related to evolution of landslide prone slopes at different spatial and temporal scales.  In this context, we additionally integrate UAV-based observation for deriving volumetric changes also related to globally available DEM products, such as SRTM and ALOS.  </p><p>We present results for selected settings comprising large area co-seismic landslide occurrence related to the Kaikoura 2016 and the Nepal 2015 earthquakes. For the latter one we also analyzed annual pre- and post-seismic monsoon related landslide activity contributing to a better understanding of the interplay between these main triggering factors. Moreover, we report on ten years of large area systematic landslide monitoring in Southern Kyrgyzstan resulting in a multi-temporal regional landslide inventory of so far unprecedented spatiotemporal detail and completeness forming the basis for further analysis of the obtained landslide concentration patterns. We also present first results of our analysis of landslides triggered by intense rainfall and flood events in spring of 2019 in the North of Iran. We conclude that in all cases, the obtained results are crucial for improved landslide prediction and reduction of future landslide impact. Thus, our methodological developments represent an important contribution towards improved hazard and risk assessment as well as rapid mapping and early warning</p>


Sign in / Sign up

Export Citation Format

Share Document