scholarly journals Perancangan Antena Mikrostrip Siw Cavity-Backed Modified Dumbell-Shaped Slot Untuk Pengaplikasian Pada 5G

2020 ◽  
Vol 11 (2) ◽  
pp. 115
Author(s):  
Sepryanto Sepryanto ◽  
Said Attamimi ◽  
Fadli Sirait

Perkembangan teknologi dan informasi yang semakin meningkat mengakibatkan kebutuhan masyarakat juga semakin meningkat salah satunya adalah kebutuhan akan teknologi telekomunikasi seluler tanpa kabel (wireless). Perkembangan teknologi seluler di Indonesia yang terakhir berkembang sejak tahun 2010 adalah 4G LTE yang berada pada pita frekuensi yang telah ditentukan pemerintah. Perkembangan teknologi wireless di Indonesia juga sudah sampai pada teknologi 5G, didukung dengan adanya beberapa kajian mengenai implementasi 5G di Indonesia. Frekuensi untuk teknologi 5G termasuk ke dalam frekuensi tinggi, yaitu frekuensi dengan panjang gelombang yang kecil, frekuensi ini yang disebut sebagai millimeterwave (mmWave). Dalam penelitian ini dilakukan perancangan antena Substrate Integrated Waveguide (SIW) yang dibuat menggunakan PCB berjenis FR4 epoxy dengan ketebalan 1,6 mm dan nilai konstanta dielektrik 4.4-4.9, yang bekerja pada frekuensi 28 GHz, dengan menambahkan slot untuk memperbesar gain antena. Perancangan dilakukan menggunakan software Ansoft High Frequency Structure Simulator (HFSS) v16.0. Sedangkan pengukuran antena dilakukan di Laboratorium Pusat penelitian Elektronika dan Telekomunikasi LIPI Bandung. Hasil simulasi antena bekerja pada frekuensi 27,9 – 29,3 GHz dengan bandwidth 1,4 GHz dan faktor refleksi mencapai -27,43 dB. Sementara hasil pengukuran menunjukan antena bekerja pada frekuensi 29,56 – 30,66 GHz dengan bandwidth 1,1 GHz dan faktor refleksi -24,35 dB. Hasil simulasi menunjukkan adanya peningkatan gain, dengan peningkatan gain paling maksimum yaitu sebesar 5,49 dB. Perbedaan ini mungkin disebabkan kesalahan dalam proses fabrikasi, proses menyolder yang tidak sempurna serta kesalahan dalam pengambilan data pengukuran

A comb shaped microstrip antenna is designed by loading rectangular slots on the patch of the antenna. The antenna resonating at three different frequencies f1 = 5.35 GHz, f2 = 6.19 GHz and f3= 8.15 GHz. The designed antenna is simulated on High Frequency Structure Simulator software [HFSS] and the antenna is fabricated using substrate glass epoxy with dielectric constant 4.4 having dimension of 8x4x0.16 cms. The antenna shows good return loss, bandwidth and VSWR. Experimental results are observed using Vector Analyzer MS2037C/2.


Author(s):  
Debasish Dash ◽  
Mrunal A Marihal ◽  
Dr. H. V. Kumaraswamy ◽  
Dr K. Sreelakshmi

5G or fifth generation of cellular technology, is the successor of 4G LTE. It focusses on high date rate, high system capacity cheaper cost. Although it is still a maturing technology, the countries around the world have already stared implementing of on experimented basis. Massive connectivity is at the core of 5G and thus aim to get different components around us connected to each other. The paper focusses on minkowski loops fractal structures till 2nd iteration making a simpler and cheaper antenna for 5G application of cellular technology. The main feature of this antenna is that it occupied the same space as a regular pattern antenna, but offers a far bigger length for radiation. The resonant frequency taken is 30GHz. The substrate taken is RT-Duriod 6006 with dielectric constant 6.45. The antenna has been designed, simulated and analyzed using the software high frequency structure simulator.


2014 ◽  
Vol 631-632 ◽  
pp. 383-386
Author(s):  
Jiao Jiao Fan ◽  
Jian Li ◽  
Dan Song ◽  
Li Wu ◽  
Shu Sheng Peng

A new ka-band circularly-polarized antenna is presented in this paper, in which a linearly-polarized wave is conversed into a circularly-polarized wave with a circular waveguide polarizer. After simulation and optimization with HFSS (High Frequency Structure Simulator), a compact circularly-polarized antenna is designed with a total height less than 25mm. More simple and easier structure is adopted to achieve a low-profile circularly-polarized antenna.


Author(s):  
Rakesh N

Abstract: The evolution of wireless communication system has led path for innovative antenna design specifically in wideband antenna for WiMax application. In this paper design and simulation of microstrip wideband circular patch antenna array operating between 2GHz to 4Ghz is presented. The circular patch antenna is designed to operate at 3GHz line feed and the ground is itched to achieve required wideband characteristics. The simulation is carried out in EM Flow solver, High Frequency Structure Simulator software. For a single patch antenna, the return loss, lesser than -10dB throughout the bandwidth. Later an antenna array is operating between 2GHz to 4GHz frequency is designed and simulated. The return loss is lesser than -12dBi throughout the band and a peak gain is 14.7dBi. Keywords: Microstrip Patch Antenna (MPA), High Frequency Structure Simulator (HFSS).


2015 ◽  
Vol 8 (3) ◽  
pp. 633-641
Author(s):  
Hamsakutty Vettikalladi ◽  
Muhammad Kamran Saleem ◽  
Majeed A.S. Alkanhal

The design and the results of a single slot coupled substrate integrated waveguide (SIW)-fed membrane antenna and a 1 × 4 array is presented for 94 GHz communication system. The membrane antenna is designed using Ansys high frequency structure simulator and consists of six layers. The microstrip patch antenna placed on the top pyralux substrate layer is excited by means of a longitudinal rectangular slot placed over the SIW structure in the bottom pyralux substrate. The simulated antenna impedance bandwidth is found to be 5 GHz (91.5–96.5 GHz) for both single element and 1 × 4 array. Furthermore, the gain is found to be 7 and 13 dBi for the single element and the 1 × 4 array elements, respectively. The results are verified using Computer Simulation Technology (CST) Microwave Studio and are found to be in good agreement.


2013 ◽  
Vol 547 ◽  
pp. 19-24
Author(s):  
Jia Min Wu ◽  
Tian Bai ◽  
Wen Zhong Lu ◽  
Fei Liang ◽  
Bin Luo

Novel compact interdigital bandpass filters (BPFs) which used multilayer stepped impedance resonators (SIRs)/folded quarter–wavelength resonators were presented. Two measures were taken to reduce the sizes of the proposed filters. Firstly, two resonators (SIRs and folded quarter–wavelength resonators) with novel structures were designed. Secondly, all the designed resonators were located on different dielectric layers. The proposed interdigital BPFs, which were simulated with the high frequency structure simulator (HFSS), show excellent performance and could realize the miniaturization purpose. Furthermore, it is found that the proposed filter with folded quarter–wavelength resonators is more excellent in realizing miniaturization and improving performance than that with SIRs.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jahnavi Kachhia ◽  
Amit Patel ◽  
Alpesh Vala ◽  
Romil Patel ◽  
Keyur Mahant

This paper represents new generation of slotted antennas for satellite application where the loss can be compensated in terms of power or gain of antenna. First option is very crucial because it totally depends on size of satellite so we have proposed the high gain antenna creating number of rectangular, trapezoidal, and I shape slots in logarithm size in Substrate Integrated Waveguide (SIW) structure. The structure consists of an array of various shape slots antenna designed to operate in C and X band applications. The basic structures have been designed over a RT duroid substrate with dielectric constant of 2.2 and with a thickness of 0.508 mm. Multiple slots array and shape of slot effects have been studied and analyzed using HFSS (High Frequency Structure Simulator). The designs have been supported with its return loss, gain plot, VSWR, and radiation pattern characteristics to validate multiband operation. All the proposed antennas give gain more than 9 dB and return loss better than −10 dB. However, the proposed structures have been very sensitive to their physical dimensions.


2014 ◽  
Vol 886 ◽  
pp. 386-389
Author(s):  
Jing Wei Wu ◽  
Wei He ◽  
Dan Su ◽  
Jing Mo

Inverted-F antenna loaded meander-line was studied by using High Frequency Structure Simulator V11(hereinafter referred to as HFSS V11). Research had focused on main performance parameters of Inverted-F antenna which loaded different number of meander-lines and different height of meander-lines. According to research, main performance parameters of inverted-F antenna, such as resonant frequency, resonance impedance and S11 parameter of resonance point could be adjusted effectively. Inverted-F antenna could be miniaturized effectively by selecting appropriate number and height of meander-lines. The technology of loaded meander-line is a kind of simple and effective way that can be applied to the RFID field and other areas that have high requirements for miniaturization of antenna.


Sign in / Sign up

Export Citation Format

Share Document