scholarly journals Simulated Longleaf Pine (Pinus palustris Mill.) Restoration Increased Streamflow – a Case Study in the Lower Flint River Basin

Author(s):  
Ji Qi ◽  
Steven Brantley ◽  
Stephen Golladay

Water scarcity in the southeastern United States has increased in recent decades due to population growth, land use intensification, and climate variability. Precipitation is relatively abundant, but declines in streamflow suggest a need to better manage water yield. Restoration of low-density, frequent-fire longleaf pine (Pinus palustris Mill.) woodlands, which once dominated the southeastern Coastal Plain, represents a possible strategy to increase water yield and mitigate water scarcity. The Flint River Basin has seen recent conflicts over water appropriations and lies within the historic range of longleaf pine. We used the Soil and Water Assessment Tool (SWAT) to evaluate the potential effect of longleaf pine restoration on streamflow in the Ichawaynochaway Creek, a major tributary of the Flint River. Parameters governing plant water use, e.g. leaf area and leaf physiology, were adjusted to create a longleaf pine land cover. We simulated the conversion of ~95,000 ha of existing forest to longleaf pine, an increase from 3% to 35% of landcover in the basin. Modeled evapotranspiration was lower for longleaf pine compared to other forest types in the region, and conversion to longleaf pine increased annual water yield by 17.9 ± 1.6 mm, or 5.2%. Proportional changes in monthly streamflow were up to 74% higher during low flow periods, when in-stream habitat is most vulnerable. Restoration of longleaf pine could be a promising way to mitigate water scarcity in the southeastern U.S., and adding flow during extreme droughts may prove vitally important for conserving imperiled aquatic organisms.

2018 ◽  
Vol 10 (12) ◽  
pp. 1881 ◽  
Author(s):  
Yueyuan Zhang ◽  
Yungang Li ◽  
Xuan Ji ◽  
Xian Luo ◽  
Xue Li

Satellite-based precipitation products (SPPs) provide alternative precipitation estimates that are especially useful for sparsely gauged and ungauged basins. However, high climate variability and extreme topography pose a challenge. In such regions, rigorous validation is necessary when using SPPs for hydrological applications. We evaluated the accuracy of three recent SPPs over the upper catchment of the Red River Basin, which is a mountain gorge region of southwest China that experiences a subtropical monsoon climate. The SPPs included the Tropical Rainfall Measuring Mission (TRMM) 3B42 V7 product, the Climate Prediction Center (CPC) Morphing Algorithm (CMORPH), the Bias-corrected product (CMORPH_CRT), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Climate Data Record (PERSIANN_CDR) products. SPPs were compared with gauge rainfall from 1998 to 2010 at multiple temporal (daily, monthly) and spatial scales (grid, basin). The TRMM 3B42 product showed the best consistency with gauge observations, followed by CMORPH_CRT, and then PERSIANN_CDR. All three SPPs performed poorly when detecting the frequency of non-rain and light rain events (<1 mm); furthermore, they tended to overestimate moderate rainfall (1–25 mm) and underestimate heavy and hard rainfall (>25 mm). GR (Génie Rural) hydrological models were used to evaluate the utility of the three SPPs for daily and monthly streamflow simulation. Under Scenario I (gauge-calibrated parameters), CMORPH_CRT presented the best consistency with observed daily (Nash–Sutcliffe efficiency coefficient, or NSE = 0.73) and monthly (NSE = 0.82) streamflow. Under Scenario II (individual-calibrated parameters), SPP-driven simulations yielded satisfactory performances (NSE >0.63 for daily, NSE >0.79 for monthly); among them, TRMM 3B42 and CMORPH_CRT performed better than PERSIANN_CDR. SPP-forced simulations underestimated high flow (18.1–28.0%) and overestimated low flow (18.9–49.4%). TRMM 3B42 and CMORPH_CRT show potential for use in hydrological applications over poorly gauged and inaccessible transboundary river basins of Southwest China, particularly for monthly time intervals suitable for water resource management.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2141 ◽  
Author(s):  
Saddique ◽  
Usman ◽  
Bernhofer

Projected climate changes for the 21st century may cause great uncertainties on the hydrology of a river basin. This study explored the impacts of climate change on the water balance and hydrological regime of the Jhelum River Basin using the Soil and Water Assessment Tool (SWAT). Two downscaling methods (SDSM, Statistical Downscaling Model and LARS-WG, Long Ashton Research Station Weather Generator), three Global Circulation Models (GCMs), and two representative concentration pathways (RCP4.5 and RCP8.5) for three future periods (2030s, 2050s, and 2090s) were used to assess the climate change impacts on flow regimes. The results exhibited that both downscaling methods suggested an increase in annual streamflow over the river basin. There is generally an increasing trend of winter and autumn discharge, whereas it is complicated for summer and spring to conclude if the trend is increasing or decreasing depending on the downscaling methods. Therefore, the uncertainty associated with the downscaling of climate simulation needs to consider, for the best estimate, the impact of climate change, with its uncertainty, on a particular basin. The study also resulted that water yield and evapotranspiration in the eastern part of the basin (sub-basins at high elevation) would be most affected by climate change. The outcomes of this study would be useful for providing guidance in water management and planning for the river basin under climate change.


2018 ◽  
Vol 10 (9) ◽  
pp. 3277 ◽  
Author(s):  
Javier Senent-Aparicio ◽  
Sitian Liu ◽  
Julio Pérez-Sánchez ◽  
Adrián López-Ballesteros ◽  
Patricia Jimeno-Sáez

Climate change and the land-use and land-cover changes (LULC) resulting from anthropic activity are important factors in the degradation of an ecosystem and in the availability of a basin’s water resources. To know how these activities affect the quantity of the water resources of basins, such as the Segura River Basin, is of vital importance. In this work, the Soil and Water Assessment Tool (SWAT) was used for the study of the abovementioned impacts. The model was validated by obtaining a Nash–Sutcliffe efficiency (NSE) of 0.88 and a percent bias (PBIAS) of 17.23%, indicating that SWAT accurately replicated monthly streamflow. Next, land-use maps for the years of 1956 and 2007 were used to establish a series of scenarios that allowed us to evaluate the effects of these activities on both joint and individual water resources. A reforestation plan applied in the basin during the 1970s caused that the forest area had almost doubled, whereas the agricultural areas and shrubland had been reduced by one-third. These modifications, together with the effect of climate change, have led to a decrease of 26.3% in the quantity of generated water resources, not only due to climate change but also due to the increase in forest area.


2013 ◽  
Vol 10 (11) ◽  
pp. 13955-13978 ◽  
Author(s):  
A. A. Shawul ◽  
T. Alamirew ◽  
M. O. Dinka

Abstract. To utilize water resources in a sustainable manner, it is necessary to understand the quantity and quality in space and time. This study was initiated to evaluate the performance and applicability of the physically based Soil and Water Assessment Tool (SWAT) model in analyzing the influence of hydrologic parameters on the streamflow variability and estimation of monthly and seasonal water yield at the outlet of Shaya mountainous watershed. The calibrated SWAT model performed well for simulation of monthly streamflow. Statistical model performance measures, coefficient of determination (r2) of 0.71, the Nash–Sutcliffe simulation efficiency (ENS) of 0.71 and percent difference (D) of 3.69, for calibration and 0.76, 0.75 and 3.30, respectively for validation, indicated good performance of the model simulation on monthly time step. Mean monthly and annual water yield simulated with the calibrated model were found to be 25.8 mm and 309.0 mm, respectively. Overall, the model demonstrated good performance in capturing the patterns and trend of the observed flow series, which confirmed the appropriateness of the model for future scenario simulation. Therefore, SWAT model can be taken as a potential tool for simulation of the hydrology of unguaged watershed in mountainous areas, which behave hydro-meteorologically similar with Shaya watershed. Future studies on Shaya watershed modeling should address the issues related to water quality and evaluate best management practices.


Author(s):  
Jahanbakhsh Balist ◽  
Bahram Malekmohammadi ◽  
Hamid Reza Jafari ◽  
Ahmad Nohegar ◽  
Davide Geneletti

Abstract Water resources modeling can provide valuable information to planners. In this respect, water yield is an ecosystem service with significant roles in the sustainability of societies and ecosystems. The present study aimed to model the supply and demand of water resources and identify their scarcity and stress in the Sirvan river basin. For this purpose, we employed the ecosystem services concept as new thinking in earth sciences and using soil, climate, and land use data. Firstly, the Landsat satellite images of 2019 were prepared after different corrections, and the land use map was produced. Then, precipitation, evapotranspiration, root restricting layer depth, and evapotranspiration coefficients of the land uses were prepared and modeled in InVEST 3.8.9 software environment. The findings indicated that the water yield in this river basin is 5,381 million m3, with sub-basins 5, 11, and 1 having the highest water yield per year and sub-basin 2 having the lowest water yield. Moreover, sub-basins 5 and 11 had the highest water consumption. Based on the estimated water scarcity and stress index, sub-basin 8 has experienced water scarcity and sub-basin 4 water stress. We conclude that applying the InVEST Water Yield model to assess water resource status at the basin and sub-basins level can provide suitable results for planning.


Author(s):  
Minh Tuan Bui ◽  
Jinmei Lu ◽  
Linmei Nie

Abstract The effects of watershed subdivisions on hydrological simulations have not been evaluated in the Arctic conditions yet. This study applied the Soil and Water Assessment Tool and the threshold drainage area (TDA) technique to evaluate the impacts of watershed subdivision on hydrological simulations at a 5,913-km2 Arctic watershed, Målselv. The watershed was discretized according to four TDA scheme scales including 200, 2,000, 5,000, and 10,000 ha. The impacts of different TDA schemes on hydrological simulations in water balance components, snowmelt runoff, and streamflow were investigated. The study revealed that the complexity of terrain and topographic attributes altered significantly in the coarse discretizations: (1) total stream length (−47.2 to −74.6%); (2) average stream slope (−68 to −83%); and (3) drainage density (−24.2 to −51.5%). The spatial density of weather grid integration reduced from −5 to −33.33% in the coarse schemes. The annual mean potential evapotranspiration, evapotranspiration, and lateral flow slightly decreased, while areal rainfall, surface runoff, and water yield slightly increased with the increases of TDAs. It was concluded that the fine TDAs produced finer and higher ranges of snowmelt runoff volume across the watershed. All TDAs had similar capacities to replicate the observed tendency of monthly mean streamflow hydrograph, except overestimated/underestimated peak flows. Spatial variation of streamflow was well analyzed in the fine schemes with high density of stream networks, while the coarse schemes simplified this. Watershed subdivisions affected model performances, in the way of decreasing the accuracy of monthly streamflow simulation, at 60% of investigated hydro-gauging stations (3/5 stations) and in the upstream. Furthermore, watershed subdivisions strongly affected the calibration process regarding the changes in sensitivity ranking of 18 calibrated model parameters and time it took to calibrate.


2017 ◽  
Vol 9 (3) ◽  
pp. 421-433 ◽  
Author(s):  
Hamed Rouhani ◽  
Marayam Sadat Jafarzadeh

Abstract A general circulation model (GCM) and hydrological model SWAT (Soil and Water Assessment Tool) under forcing from A1B, B1, and A2 emission scenarios by 2030 were used to assess the implications of climate change on water balance of the Gorganrood River Basin (GRB). The results of MPEH5C models and multi-scenarios indicated that monthly precipitation generally decreases while temperature increases in various parts of the basin with the magnitude of the changes in terms of different stations and scenarios. Accordingly, seasonal ET will decrease throughout the GRB over the 2020s in all seasons except in summer, where a slight increase is projected for A1B and A2 scenarios. At annual scale, average quick flow and average low flow under the B1, A1B, and A2 scenarios are projected to decrease by 7.3 to 12.0% from the historical levels. Over the ensembles of climate change scenarios, the simulations project average autumn total flow declines of ∼10% and an overall range of 6.9 to 13.2%. In summer, the components of flow at the studied basin are expected to increase under A2 and A1B scenarios but will slightly decrease under B1 scenario. The study result addresses a likelihood of inevitable future climate change.


2021 ◽  
Author(s):  
Sydney Oluoch ◽  
Pankaj Lal ◽  
Bernabas Wolde ◽  
Andres Susaeta ◽  
Josè R Soto ◽  
...  

Abstract Longleaf pine (LLP) (Pinus palustris Mill.) is well known for its role in supporting healthy ecosystems in the southeastern (SE) United States (US). The decline of LLP forest ecosystems has led to a consensus among stakeholders that restoration efforts are needed. However, there is still a lack of robust understanding of the utilization of nonmarket ecosystem services of LLP forests. These challenges have presented major barriers to landowner acceptance of subsidized LLP restoration programs. Understanding the tradeoffs between forest ecosystem services is critical to restoring LLP in the SE US. This study employs the best-worst choice (BWC) method to assess public preferences toward hypothetical LLP restoration programs that consider ecosystem services such as recreation, timber production, carbon sequestration, water yield, and wildlife diversity. We surveyed a representative sample of n = 953 respondents from Alabama, Mississippi, Georgia, and Florida, and results showed that residents in all four states are willing to pay for LLP restoration, with the highest average willingness to pay (WTP) for forest recreation ($20.39), followed by red-cockaded woodpecker (RCW) conservation ($13.37) and carbon sequestration ($13.32). This research provides important public preference information on ecosystem services that is critical in forming sustainable LLP restoration programs. Study Implications This study is useful from a policy assessment perspective for evaluating benefits and costs of LLP restoration programs in the SE US, for informing program design, and understanding tradeoffs between LLP ecosystem services. The public plays an important role in influencing environmental policy choices, including LLP restoration programs.


Sign in / Sign up

Export Citation Format

Share Document