scholarly journals A study on the effect of process parameters on the joint strength and leak tightness in electromagnetically assisted adhesive Cu-SS tube-to-tube joining through statistical analysis

Author(s):  
Deepak Kumar ◽  
Sachin D Kore ◽  
Arup Nandy

This work studies an improved hybrid joining technique combining electromagnetic forming and adhesive joining to create a leak-tight Cu-SS tube-to-tube joint named as electromagnetically assisted adhesive joining (EAAJ). An experimental investigation is performed considering three discharge energy (3.9 kJ, 4.4 kJ and 5.0 kJ), four adhesive application lengths (20 mm, 15 mm, 10 mm and 5 mm), three adhesives (Loctite 638, Loctite 567, and Loctite SI 596) and four curing times (24 hours, 48 hours, 96 hours and 120 hours) as process parameters. The mechanical properties of the joints are investigated using testing techniques like pull-out, compression, and micro-hardness tests. An increase in joint strength is observed with the decrease in adhesive application length and increase in curing time. Maximum joint strength, 90% of the base copper tube strength, is obtained in the case of Loctite 638, with 5 mm of adhesive application length, 5.0 kJ of discharge energy and 96 hours of curing time. Furthermore, a three-way analysis (3-way ANOVA) of variance technique is implemented to calculate the contribution of the three factors (discharge energy, adhesive application length, type of adhesives) on the joint strength. A cohesive and adhesive failure mode combination leading to sliding failure mode is observed as a joint failure mechanism during pull-out and compression testing. A leak testing setup has been developed to investigate the joint’s leak tightness by an air pressure decay test. An increment in leak tightness by 1000 times is observed in 638 EAAJ samples compared to samples joined without adhesives. A 3-way ANOVA analysis is also performed to calculate the contribution of different factors on leak tightness of the joint. Micro-hardness is observed to be increased near the joint interface compared to the base metal. Deformation analysis has highlighted the impact of field shaper slit causing a non-uniformity in radial deformation in the circumferential direction and leading to non-uniform circumferential accumulation of adhesive.

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4195
Author(s):  
Thanikodi Sathish ◽  
Vinayagam Mohanavel ◽  
Thandavamoorthy Raja ◽  
Sinouvassane Djearamane ◽  
Palanivel Velmurugan ◽  
...  

In recent days, natural fibers are extremely influential in numerous applications such as automobile body building, boat construction, civil structure, and packing goods. Intensification of the properties of natural fibers is achieved by blending different natural fibers with resin in a proper mixing ratio. This investigation aims to synthesize a hybrid polymer matrix composite with the use of natural fibers of flax and loops of hemp in the epoxy matrix. The synthesized composites were characterized in terms of tribological and mechanical properties. The Taguchi L16 orthogonal array is employed in the preparation of composite samples as well as analysis and optimization of the synthesis parameters. The optimization of compression molding process parameters has enhanced the results of this investigation. The parameters chosen are percentage of reinforcement (20%, 30%, 40%, and 50%), molding temperature (150 °C, 160 °C, 170 °C, and 180 °C), molding pressure (1 MPa, 2 MPa, 3 MPa, and 4 MPa), and curing time (20 min, 25 min, 30 min, and 35 min). From the analysis, it was observed that the percentage of reinforcement is contributing more to altering the fatigue strength, and the curing time is influenced in the impact and wear analysis.


Within this research study, Taguchi system of style of experimental was utilized to assess the impact of some welding process parameters of sound state welding techniques like rotational speed(spinning velocity), travel speed in addition to pin profile on Tensile Strength (UTS), microhardness in addition to effect strength of Friction Stir Welded (FSW) 2024 light weight aluminum alloy joint. An orthogonal array of L9 design was actually employed for experimental trials and also Signal to noise proportion( S/N) values for each process specifications was computed. Based upon the S/N review the optimal level of process specifications was actually decided on as 1120 revoltions per minute, 25 mm/min and also Cylinder pin with Flutes( CWF) for best Tensile Strength and also micro Hardness. The ideal degree of process parameters for Impact toughness was actually pinpointed as 1120rpm,31.5 mm/min and also Tapered Cylindrical pin account( Drawback). Depending on to Analysis of variance (ANOVA), it was seen that the task of spinning, travel velocity and also pin geometry was 37.31, 64.84 and 1.13 per-cent effect on Ultimate tensile strength, 34.16, 51.28 and 0.58 per-cent impact on micro Hardness as well as 50.10, 43.7 and 6.2 percent influence on Influence Toughness of joint respectively. Eventually based upon FSW guidelines a model was actually created for tensile strength, Micro Hardness and Toughness values. The results were confirmed by further experiments, which yield the experimented values as 349.83 MPa for tensile strength, 114.26 Hardness and 7.8kJ Impact strength.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 103
Author(s):  
Jin Mark D. G. Pagulayan ◽  
Aprille Suzette V. Mendoza ◽  
Fredelyn S. Gascon ◽  
Jan Carlo C. Aningat ◽  
Abigail S. Rustia ◽  
...  

The study aimed to evaluate the effects of process parameters (time and raw material weight (RMW)) of conventional (boiling for 10–45 min) and microwave-assisted (2–8 min) aqueous extraction on the color quality (i.e., lightness (L*), chroma (C*), and hue (H°) of anthocyanin –based colorants of red and Inubi sweet potato (Ipomoea batatas L.) leaves. Using response surface methodology, it was found that RMW and boiling time (BT) and microwave time (MT) generally had a significant (p < 0.05) effect on the color quality of the extract from both extraction methods. The effects were found to vary depending on the extraction method and variety of the leaves used. Both extraction methods produced a brown to brick-red extract from the Inubi variety that turned red-violet to pink when acidified. The red sweet potato leaves produced a deep violet colored extract that also turned red-violet when acidified. It is recommended that the anthocyanin content of the extracts be measured to validate the impact of the methods on the active agent. Nevertheless, the outcomes in this study may serve as baseline data for further studies on the potential of sweet potato leaf colorants (SPLC) as a colorant with functional properties.


2021 ◽  
Vol 217 (1) ◽  
pp. 255-264
Author(s):  
Xiaomeng Zhu ◽  
Xiaolan Cai ◽  
Shuang Zhang ◽  
Lei Wang ◽  
Xudong Cui

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2784
Author(s):  
Georgios Maliaris ◽  
Christos Gakias ◽  
Michail Malikoutsakis ◽  
Georgios Savaidis

Shot peening is one of the most favored surface treatment processes mostly applied on large-scale engineering components to enhance their fatigue performance. Due to the stochastic nature and the mutual interactions of process parameters and the partially contradictory effects caused on the component’s surface (increase in residual stress, work-hardening, and increase in roughness), there is demand for capable and user-friendly simulation models to support the responsible engineers in developing optimal shot-peening processes. The present paper contains a user-friendly Finite Element Method-based 2D model covering all major process parameters. Its novelty and scientific breakthrough lie in its capability to consider various size distributions and elastoplastic material properties of the shots. Therewith, the model is capable to provide insight into the influence of every individual process parameter and their interactions. Despite certain restrictions arising from its 2D nature, the model can be accurately applied for qualitative or comparative studies and processes’ assessments to select the most promising one(s) for the further experimental investigations. The model is applied to a high-strength steel grade used for automotive leaf springs considering real shot size distributions. The results reveal that the increase in shot velocity and the impact angle increase the extent of the residual stresses but also the surface roughness. The usage of elastoplastic material properties for the shots has been proved crucial to obtain physically reasonable results regarding the component’s behavior.


RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8970-8985
Author(s):  
Robin Kunkel ◽  
Volkmar M. Schmidt ◽  
Carsten Cremers ◽  
Dominik Müller ◽  
Detlef Schmiedl ◽  
...  

Hydrovanilloin and polyvanillin were synthesized electrochemically investigating the impact of process parameters such as electrode material, charge and current density.


2011 ◽  
Vol 462-463 ◽  
pp. 1194-1199
Author(s):  
Zainudin Kornain ◽  
Azman Jalar ◽  
Rozaidi Rashid ◽  
Shahrum Abdullah

Underfilling is the vital process to reduce the impact of the thermal stress that results from the mismatch in the co-efficient of thermal expansion (CTE) between the silicon chip and the substrate in Flip Chip Packaging. This paper reported the pattern of underfill’s hardness during curing process for large die Ceramic Flip Chip Ball Grid Array (FC-CBGA). A commercial amine based underfill epoxy was dispensed into HiCTE FC-CBGA and cured in curing oven under a new method of two-step curing profile. Nano-identation test was employed to investigate the hardness of underfill epoxy during curing steps. The result has shown the almost similar hardness of fillet area and centre of the package after cured which presented uniformity of curing states. The total curing time/cycle in production was potentially reduced due to no significant different of hardness after 60 min and 120 min during the period of second hold temperature.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Claire Dislaire ◽  
Yves Grohens ◽  
Bastien Seantier ◽  
Marion Muzy

AbstractThis study was carried out using bleached softwood Chemi-Thermo-Mechanical Pulp to evaluate the influence of Molded Pulp Products’ manufacturing process parameters on the finished products’ mechanical and hygroscopic properties. A Taguchi table was done to make 8 tests with specific process parameters such as moulds temperature, pulping time, drying time, and pressing time. The results of these tests were used to obtain an optimized manufacturing process with improved mechanical properties and a lower water uptake after sorption analysis and water immersion. The optimized process parameters allowed us to improve the Young’ Modulus after 30h immersion of 58% and a water uptake reduction of 78% with the first 8 tests done.


Sign in / Sign up

Export Citation Format

Share Document