scholarly journals Physico-mechanical properties of bio-composites fabricated from polylactic acid and rice husk treated with alkali and ionic liquid

2019 ◽  
Vol 2 ◽  
pp. 28-41
Author(s):  
Md. Sakinul Islam ◽  
Mohamed Rashid Ahmed-Haras ◽  
Nhol Kao ◽  
Rahul Gupta ◽  
Sati Bhattacharya ◽  
...  

In the present work, chemically treated rice husk (TRH) and untreated rice husk (UTRH) reinforced polylactic acid (PLA) bio-composites were produced using Haake rheomixer and compression moulding processes. Alkali (NaOH) and ionic liquid (IL: 1-ethyl-3-methylimidazolium acetate) treated rice husk samples are TRHN4 and TRHILN4 respectively. Using UTRH, TRHN4 and TRHILN4 the fabricated bio-composites are UTRH-PLA, TRHN4-PLA and TRHILN4-PLA respectively. The tensile strength (TS), tensile modulus (TM), impact strength (IS) and hardness values of TRHN4-PLA and TRHILN4-PLA were found to be much higher than the corresponding values of the UTRH-PLA bio-composites.  The tensile fracture surface morphological features of TRHN4-PLA and TRHILN4-PLA composites, observed by scanning electron microscopy (SEM), revealed less micro voids and fibre agglomerates, which indicates that better filler-matrix interfacial adhesion occurred in the case of chemical treated RH compared to UTRH when blended with PLA. However, composites TRHN4-PLA and TRHILN4-PLA showed lower water uptake capacity compared to UTRH-PLA.  From the FTIR spectra of UTRH, TRHN4 and TRHILN4 together with water absorption behaviour of the composite specimens, it appeared that chemical modifications significantly reduced the hydrophilic nature of RH, resulting in improved fibre-matrix interfacial adhesion. The overall physico-mechanical properties of fabricated bio-composites were found to follow this order: TRHILN4-PLA>TRHN4-PLA>UTRH-PLA.


2016 ◽  
Vol 846 ◽  
pp. 665-672
Author(s):  
Yoon Yee Then ◽  
Ibrahim Nor Azowa ◽  
Norhazlin Zainuddin ◽  
Buong Woei Chieng ◽  
Chern Chiet Eng ◽  
...  

The issue related to relatively poor interfacial adhesion between hydrophilic natural fiber and hydrophobic thermoplastic remain as an obstacle in natural fiber/thermoplastic biocomposites. Consequently, surface treatment of fiber is of important to impart adhesion. The present work used consecutive superheated steam-alkali treatment to treat the oil palm mesocarp fiber (OPMF) prior to biocomposite fabrication. The biocomposites made up of 70 wt% treated OPMF and 30 wt% poly (butylene succinate) (PBS) were prepared by melt blending technique in a Brabender internal mixer followed by hot-press moulding into 1 mm sheets. A silane coupling agent of (3-aminopropyl) trimethoxysilane (APTMS) was also added to the biocomposite during the process of compounding to promote interfacial adhesion and enhance the properties of biocomposites. The results showed that the biocomposite containing 2 wt% APTMS showed maximum enhancement in tensile strength (89%), tensile modulus (812%) and elongation at break (52%) in comparison to that of untreated OPMF/PBS biocomposite. The SEM observation of the tensile fracture surface revealed that APTMS improved the interfacial adhesion between treated OPMF and PBS. It can be deduced that the presence of APTMS can improve the adhesion between hydrophilic fiber and hydrophobic thermoplastic, and thus increased the tensile properties of the biocomposite.



2017 ◽  
Vol 37 (6) ◽  
pp. 547-557 ◽  
Author(s):  
Sekaran Sathees Kumar ◽  
Ganesan Kanagaraj

Abstract In this paper, the combined effect of different weight percentages of silicon carbide (SiC) and graphite (Gr) reinforcement on the mechanical properties of polyamide (PA6) composite is studied. Test specimens of pure PA6, 85 wt% PA6+10 wt% SiC+5 wt% Gr and 85 wt% PA6+5 wt% SiC+10 wt% Gr are prepared using an injection molding machine. The tensile, impact, hardness, morphology and thermal properties of the injection molded composites were investigated. The obtained results showed that mechanical properties, such as tensile and impact strength and modulus of the PA6 composites, were significantly higher than the pure PA6, and hybridization with silicon carbide and graphite further enhanced the performance properties, as well as the thermal resistance of the composites. The tensile fracture morphology and the characterization of PA6 polymer composites were observed by scanning electron microscope (SEM) and Fourier transform infrared spectroscopic methods. SEM observation of the fracture surfaces showed the fine dispersion of SiC and Gr for strong interfacial adhesion between fibers and matrix. The individual and combined reinforcing effects of silicon carbide and graphite on the mechanical properties of PA6 hybrid composites were compared and interpreted in this study. Improved mechanical properties were observed by the addition of small amount of SiC and Gr concurrently reinforced with the pure PA6. Finally, thermogravimetric analysis showed that the heat resistance of the composites tended to increase with increasing silicon carbide and graphite content simultaneously.



2010 ◽  
Vol 146-147 ◽  
pp. 674-677
Author(s):  
Tian Han Xu ◽  
Yao Rong Feng ◽  
Sheng Yin Song ◽  
Zhi Hao Jin

An investigation into the mechanical properties of K55,N80 and P110 steels was carried out for casing-drilling technology. The obvious presence of bright facets on broken K55 Charpy V-Notch (CVN) sample surfaces was indicative of the effect of microstructure on the cleavage fracture. The appearing of bright facet surfaces of K55 was attributed to the microstructure of ferrite and pearlite. The fracture surfaces of N80 and P110 CVN samples included quasi-cleavage fracture mechanism and dimple fracture mechanism, respectively. The tensile fracture surface of all three types of casing-drilling steels included dimple fracture mechanism, both the N80 and P110 specimen show higher UTS and impact energy values compared to the K55 specimen.



2016 ◽  
Vol 1133 ◽  
pp. 593-597 ◽  
Author(s):  
Mohd Khairulniza Mansor ◽  
Ruslimie Che Ali

Effects of filler loading on the mechanical properties of Epoxidised natural rubber (ENR) filled with bio-fillers were studied. The compounds with different filler loadings (0, 30, 50, 70 phr) were prepared in a Haake internal mixer. Result showed that the viscosity of the compounds increased with filler loading and exhibited longer cure time with higher loading of the bio-filler. The mechanical properties of starch-filled vulcanisates present better tensile strength at 50 phr when compared to micro-crystalline cellulose (MCC) filled vulcanisates at similar filler loadings. The scanning electron microscopy (SEM) of tensile fracture surface of 50 phr starch-filled vulcanisates illustrated a homogenous distribution in comparison with MCC-filled compounds.



2014 ◽  
Vol 911 ◽  
pp. 13-17 ◽  
Author(s):  
Abdullah Farah Dina ◽  
Sa’ad Siti Zaleha ◽  
Bonnia Noor Najmi ◽  
Ibrahim Nor Azowa

This study focuses on the influence of surface treatment and fibre sizes on mechanical behavior, physical properties and morphology of rice husk fibre (RHF) reinforced polylactic-acid (PLA). Modified RHF was prepared by using 6w.t.% sodium hydroxide (NaOH) and distilled water. PLA composite reinforced with 25w.t.% volume fractions of modified RHF was mixed using the internal mixer and fabricated by the mini injection moulding. Tensile and flexural strength results showed that the PLA composite with 100, 200 and 500μm particles sizes of water treated fibre are much higher than those of alkaline treated. DSC measurement was performed and indicated that the Tg,Tmand ΔHmof PLA reduced after reinforcement with water treated and alkaline treated fibres. TGA results showed that the treatment reduced the thermal stability of the PLA. FESEM micrographs for flexural fractured surfaces of composites showed micro crack and pores due to brittle fracture of the PLA matrix adjacent to the fibre as a result of the brittle nature of the PLA resin.



2018 ◽  
Vol 10 (2) ◽  
pp. 116
Author(s):  
Henny Pratiwi

This research aims to investigate the effects of albasia wood filler as alternative reinforcement for extravagant and non-renewable filler being used in epoxy composites. The filler size used was 30 mesh and various filler volume fractions were 10, 20, 30 and 40 percent. Composites were manufactured using hand lay-up method. Properties such as tensile strength, elongation, modulus elasticity and strain energy absorption were determined based on ASTM standard. The results show that filler volume content significantly affects the tensile properties and impact strength of albasia wood-epoxy composites. The optimum tensile properties are achieved when 10 percent filler is added into epoxy matrix. The impact test also shows the same results. Further addition of filler decreases the mechanical properties of composites due to the existence of weak interfacial interaction between the albasia wood filler and polymer matrix for higher filler volume concentration beyond 10 vol. %. The scanning electron micrograph reveals that there are voids and pull-out mechanism on tensile fracture surface which are the cause of the composites failure.



Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2276
Author(s):  
Rozyanty Rahman ◽  
Syed Zhafer Firdaus Syed Putra ◽  
Shayfull Zamree Abd Rahim ◽  
Irwana Nainggolan ◽  
Bartłomiej Jeż ◽  
...  

The demand for natural fiber hybrid composites for various applications has increased, which is leading to more research being conducted on natural fiber hybrid composites due to their promising mechanical properties. However, the incompatibility of natural fiber with polymer matrix limits the performance of the natural fiber hybrid composite. In this research work, the mechanical properties and fiber-to-matrix interfacial adhesion were investigated. The efficiency of methyl methacrylate (MMA)-esterification treatments on composites’ final product performance was determined. The composite was prepared using the hand lay-up method with varying kenaf bast fiber (KBF) contents of 10, 15, 20, 25, 30, 35 (weight%) and hybridized with glass fiber (GF) at 5 and 10 (weight%). Unsaturated polyester (UPE) resin and methyl ethyl ketone peroxide (MEKP) were used as binders and catalysts, respectively. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used to examine the effects of MMA-esterification treatment on tensile strength and morphology (tensile fracture and characterization of MMA-esterification treatment) of the composite fabricated. The tensile strength of MMA-treated reinforced UPE and hybrid composites are higher than that of untreated composites. As for MMA treatment, 90 min of treatment showed the highest weight percent gain (WPG) and tensile strength of KBF-reinforced UPE composites. It can be concluded that the esterification of MMA on the KBF can lead to better mechanical properties and adhesion between the KFB and the UPE matrix. This research provides a clear reference for developing hybrid natural fibers, thus contributing to the current field of knowledge related to GF composites, specifically in transportation diligences due to their properties of being lightweight, superior, and involving low production cost.



2021 ◽  
Author(s):  
Swati Sharma ◽  
Abhijit Majumdar ◽  
Bhupendra Singh Butola

Abstract This research work emphasises on improving the interfacial adhesion of ramie/ polylactic acid (PLA) composites. For this purpose, ramie fabric was modified using vinyl trimethoxy silane with two different hydrolysing agents, i.e. sodium hydroxide and ammonia. The surface modified ramie fabric was characterised by static water contact angle, elemental dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR). FTIR and EDX analysis confirmed the presence of silica. The tensile strength of fabric showed a decrease after the silane treatment. The composites were prepared by compression moulding using untreated and treated ramie fabrics with PLA. The treatment improved tensile and impact performance of ramie/PLA composites due to enhanced interfacial adhesion between fibre and matrix. Dynamic mechanical analysis (DMA) results revealed that treated ramie/PLA composites have higher storage modulus and lower tangent delta than untreated composites.



2012 ◽  
Vol 217-219 ◽  
pp. 157-160
Author(s):  
Hong Qiang Sun ◽  
Xiao Qing Wu

The tensile performance of the vinyl resin casting body, epoxy resin casting body, carbon fiber(CF) reinforced vinyl composites and CF/epoxy composites has been presented. The morphology of tensile fracture surface of CF/epoxy and CF/vinyl has been compared, and the interface adhesion has been analysed. The results show the tensile strength for vinyl resin casting body is lower than epoxy resin casting body’s, the tensile modulus of them are close. But the tensile strength and modulus of CF/vinyl composites are both close to CF/epoxy composites. And the vinyl has the better interface adhesion and wettability on CF than epoxy.



2014 ◽  
Vol 1025-1026 ◽  
pp. 221-226 ◽  
Author(s):  
Supavinee Sareeladdanon ◽  
Pranut Potiyaraj

Nanocomposite is one of the most favorable approaches to improve mechanical properties of polymers. This study prepared polymer composite of PLA and LLDPE with different amount of rice husk silica (0.5 and 1 wt%). The composites were prepared by melt-mixing in a twin-screw extruder and processed into film by a chill roll cast extruder. The mechanical properties were investigated through tensile testing and tear testing. The result show that the tensile modulus of PLA decreased with 1wt% rice husk silica. Similarly, tensile modulus of LLDPE dropped with the addition of silica. However, with the addition 0.5 and 1 wt% rice husk silica, the elongation at break of PLA and LLDPE composites increases significantly.



Sign in / Sign up

Export Citation Format

Share Document