scholarly journals Antibiotic susceptibility patterns of isolated bacteria from bile fluids of patients with gallstone disease in Isfahan city (Iran)

2015 ◽  
Vol 67 (2) ◽  
pp. 611-617
Author(s):  
Seyed-Masih Fatemi ◽  
Abbas Doosti ◽  
Hamid Tavakoli ◽  
Reza Moayednia ◽  
Payam Ghasemi-Dehkordi ◽  
...  

Bacterial infections are one of the important agents in the creation of gallstones in the gallbladder. In recent years the spread of antibiotic-resistant bacteria such as extended-spectrum ?-lactamases (ESBL) is increasing and of concern in hospitalized patients worldwide. The purpose of this study was to investigate the antibiotic susceptibility patterns of isolated bacteria from the bile specimens of patients with chronic and acute cholecystitis who had been operated by single-incision laparoscopic cholecystectomy (SILC) in Isfahan (Iran) 2 using an antibiogram susceptibility test and molecular technique. The bile fluids of 91 patients were obtained from the Al-Zahra hospital and were cultured on specific media for the isolation of Gram-negative and positive bacteria and the disk diffusion test was done to determine the antibiotic susceptibility patterns of isolated bacteria. Finally, bacterial DNA was extracted from the bile samples and polymerase chain reaction (PCR) was performed to investigate extended-spectrum ?-lactamases genes. The bacteria Escherichia coli, Klebsiella pneumoniae, Proteus spp. and Staphylococcus aureus were detected in bile specimens cultured with high frequency, and the results showed that biliary infection increased with aging in patients with gallstone disease operated by SILC. The results showed a high frequency of ESBL genes including TEM, SHV, and CTX-M in isolated bacteria (especially Escherichia coli and Klebsiella spp.). Thus, evaluating the antibiotic susceptibility patterns and screening of ESBLs bacteria in patients with gallstones are essential. Prescribing suitable drugs, designing good strategies, and informing the medical community could decrease bile infection and antibiotic-resistant bacteria in clinical centers and hospitals.

2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Erik Paulshus ◽  
Kaisa Thorell ◽  
Jessica Guzman-Otazo ◽  
Enrique Joffre ◽  
Patricia Colque ◽  
...  

ABSTRACT Antibiotic resistance in bacteria is an emerging problem globally. Resistant bacteria are found in human and animal microbiota, as well as in the environment. Wastewater receives bacteria from all these sources and thus can provide a measurement of abundance and diversity of antibiotic-resistant bacteria circulating in communities. In this study, water samples were collected from a wastewater pump station in a Norwegian suburban community over a period of 15 months. A total of 45 daily samples were cultured and analyzed for the presence of Escherichia coli. Eighty E. coli-like colonies were collected from each daily sample and then phenotyped and analyzed for antibiotic resistance using the PhenePlate-AREB system. During the sampling period, two unique E. coli phenotypes with resistance to cefotaxime and cefpodoxime indicating carriage of extended-spectrum β-lactamases (ESBL) were observed repeatedly. Whole-genome sequencing of 15 representative isolates from the two phenotypes identified these as two distinct clones belonging to the two globally spread E. coli multilocus sequence types (STs) ST131 and ST648 and carrying blaCTX-M-15. The number of ESBL-positive E. coli strains in the community wastewater pump station was 314 of 3,123 (10%) analyzed E. coli strains. Of the ESBL-positive isolates, 37% belonged to ST648, and 7% belonged to ST131. Repeated findings of CTX-M-15-positive ST648 and ST131 over time indicate that these STs are resident in the analyzed wastewater systems and/or circulate abundantly in the community.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 850
Author(s):  
Shobha Giri ◽  
Vaishnavi Kudva ◽  
Kalidas Shetty ◽  
Veena Shetty

As the global urban populations increase with rapid migration from rural areas, ready-to-eat (RTE) street foods are posing food safety challenges where street foods are prepared with less structured food safety guidelines in small and roadside outlets. The increased presence of extended-spectrum-β-lactamase (ESBL) producing bacteria in street foods is a significant risk for human health because of its epidemiological significance. Escherichia coli and Klebsiella pneumoniae have become important and dangerous foodborne pathogens globally for their relevance to antibiotic resistance. The present study was undertaken to evaluate the potential burden of antibiotic-resistant E. coli and K. pneumoniae contaminating RTE street foods and to assess the microbiological quality of foods in a typical emerging and growing urban suburb of India where RTE street foods are rapidly establishing with public health implications. A total of 100 RTE food samples were collected of which, 22.88% were E. coli and 27.12% K. pneumoniae. The prevalence of ESBL-producing E. coli and K. pneumoniae was 25.42%, isolated mostly from chutneys, salads, paani puri, and chicken. Antimicrobial resistance was observed towards cefepime (72.9%), imipenem (55.9%), cefotaxime (52.5%), and meropenem (16.9%) with 86.44% of the isolates with MAR index above 0.22. Among β-lactamase encoding genes, blaTEM (40.68%) was the most prevalent followed by blaCTX (32.20%) and blaSHV (10.17%). blaNDM gene was detected in 20.34% of the isolates. This study indicated that contaminated RTE street foods present health risks to consumers and there is a high potential of transferring multi-drug-resistant bacteria from foods to humans and from person to person as pathogens or as commensal residents of the human gut leading to challenges for subsequent therapeutic treatments.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 575
Author(s):  
Emi Nishimura ◽  
Masateru Nishiyama ◽  
Kei Nukazawa ◽  
Yoshihiro Suzuki

Information on the actual existence of antibiotic-resistant bacteria in rivers where sewage, urban wastewater, and livestock wastewater do not load is essential to prevent the spread of antibiotic-resistant bacteria in water environments. This study compared the antibiotic resistance profile of Escherichia coli upstream and downstream of human habitation. The survey was conducted in the summer, winter, and spring seasons. Resistance to one or more antibiotics at upstream and downstream sites was on average 18% and 20%, respectively, and no significant difference was observed between the survey sites. The resistance rates at the upstream site (total of 98 isolated strains) to each antibiotic were cefazolin 17%, tetracycline 12%, and ampicillin 8%, in descending order. Conversely, for the downstream site (total of 89 isolated strains), the rates were ampicillin 16%, cefazolin 16%, and tetracycline 1% in descending order. The resistance rate of tetracycline in the downstream site was significantly lower than that of the upstream site. Furthermore, phylogenetic analysis revealed that many strains showed different resistance profiles even in the same cluster of the Pulsed-Field Gel Electrophoresis (PFGE) pattern. Moreover, the resistance profiles differed in the same cluster of the upstream and the downstream sites. In flowing from the upstream to the downstream site, it is plausible that E. coli transmitted or lacked the antibiotic resistance gene.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (13) ◽  
pp. 2799-2807 ◽  
Author(s):  
Justin D. Besant ◽  
Edward H. Sargent ◽  
Shana O. Kelley

Concentrating bacteria in nanoliter culture chambers enables rapid electrochemical antibiotic susceptibility testing on-chip.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Belayneh Regasa Dadi ◽  
Eyayu Girma ◽  
Mheret Tesfaye ◽  
Mohamed Seid

Background. Antimicrobials used for the treatment and prevention of bacterial infections are mainly released nonmetabolized into the aquatic environment via wastewater. Sometimes, unused therapeutic drugs are released down the drains that could act as selective pressure for the development of resistance. The aim of this study was to assess the bacteriological profile of wastewater in health facilities and determine antibiotic susceptibility patterns of bacterial isolates. Methods. A cross-sectional study was conducted from October 1 to December 26, 2020, in health facility wastewater. A total of 128 samples were collected from health facilities for bacteriological analysis and antimicrobial susceptibility testing. Result. A total of 128 samples were processed, and 81 bacterial isolates were recovered. The most common bacterial isolates were S. aureus (16/81 (19.8%)) followed by Klebsiella spp. (15/81 (18.5%)), E. coli (13/81 (16%)), P. aeruginosa (10/81 (12.3%)), Enterobacter spp. (8/81 (9.9%)), Citrobacter spp. (7/81 (8.6%)), coagulase-negative Staphylococcus (5/81 (6.2%)), Salmonella spp. (5/81 (6.2%)), and Shigella spp. (2/81 (2.5%)). A majority of isolates were resistant to ampicillin (62/81 (76.5%)). Only few isolates were resistant to ciprofloxacin (11/81 (13.6%)), chloramphenicol (13/81 (16%)), and kanamycin (8/54 (14.8%)). A majority of bacterial isolates (57/81 (70.4%)) were multidrug resistant (MDR). Conclusion. Wastewater from the health facilities contains antibiotic-resistant including multidrug-resistant bacteria. Therefore, health facility wastewater should be treated by appropriate wastewater treatment before being released into the environment.


Sign in / Sign up

Export Citation Format

Share Document