scholarly journals Effects of nano-emulsion preparations of tocopherols and tocotrienols on oxidative stress and osteoblast differentiation

2017 ◽  
Vol 69 (1) ◽  
pp. 149-156 ◽  
Author(s):  
Liang-Song Song ◽  
Zhi-Xin Zhang ◽  
Yang Wang ◽  
Yang Liu ◽  
Rui Zhang ◽  
...  

Tocopherols and tocotrienols are two groups of compounds in the vitamin E family, of which the tocopherols are widely used as antioxidant dietary supplements. Recent studies have shown mixed observations for tocopherol functions in bone homeostasis. We have evaluated the potency of suspension- and nano-emulsion formulation-based delivery of different vitamin E family members in lipopolysaccharide (LPS)-induced oxidative stress and osteoblast differentiation. Our results showed the both tocopherols and tocotrienols could reduce oxidative stress as evaluated by the levels of reactive oxygen species (ROS). Their effects were enhanced when applied in the nano-emulsion mode of delivery due to increased bioavailability. In addition, our results showed that tocotrienols increased osteoblast differentiation, while tocopherols showed reduced osteoblast differentiation, which may be due to their differential effects on SMAD and p65 signaling. Together, these findings indicate that tocotrienols delivered through nano-emulsion exhibit superior antioxidant properties and osteoblast differentiation, and could serve as a better alternative to tocopherol-based vitamin E supplements.

2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk

AbstractOxidative stress, associated with an imbalance between the oxidants (reactive oxygen species) and the antioxidants in the body, contributes to the development of many diseases. The body’s fight against reactive oxygen species is supported by antioxidants. Nowadays, there are too many analytical methods, but there is no one universal technique for assessing antioxidant properties. Moreover, the applied different ways of expressing the results lead to their incompatibility and unreasonable interpretation. The paper is a literature review concerning the most frequent ways of antioxidant activities expression and for an easy and universal method of the obtained results discussion. This paper is an attempt to point out their disadvantages and advantages. The manuscript can support the searching interpretation of the obtained results which will be a good tool for the development of a number of fields, especially medicine what can help in the future detection and treatment of many serious diseases. Graphic abstract


2018 ◽  
Vol 19 (12) ◽  
pp. 4078 ◽  
Author(s):  
Dahn Clemens ◽  
Michael Duryee ◽  
Cleofes Sarmiento ◽  
Andrew Chiou ◽  
Jacob McGowan ◽  
...  

Doxycycline (DOX), a derivative of tetracycline, is a broad-spectrum antibiotic that exhibits a number of therapeutic activities in addition to its antibacterial properties. For example, DOX has been used in the management of a number of diseases characterized by chronic inflammation. One potential mechanism by which DOX inhibits the progression of these diseases is by reducing oxidative stress, thereby inhibiting subsequent lipid peroxidation and inflammatory responses. Herein, we tested the hypothesis that DOX directly scavenges reactive oxygen species (ROS) and inhibits the formation of redox-mediated malondialdehyde-acetaldehyde (MAA) protein adducts. Using a cell-free system, we demonstrated that DOX scavenged reactive oxygen species (ROS) produced during the formation of MAA-adducts and inhibits the formation of MAA-protein adducts. To determine whether DOX scavenges specific ROS, we examined the ability of DOX to directly scavenge superoxide and hydrogen peroxide. Using electron paramagnetic resonance (EPR) spectroscopy, we found that DOX directly scavenged superoxide, but not hydrogen peroxide. Additionally, we found that DOX inhibits MAA-induced activation of Nrf2, a redox-sensitive transcription factor. Together, these findings demonstrate the under-recognized direct antioxidant property of DOX that may help to explain its therapeutic potential in the treatment of conditions characterized by chronic inflammation and increased oxidative stress.


2020 ◽  
pp. 43-49
Author(s):  
A. A. Khisamova ◽  
O. A. Gizinger

Increased physical exertion is a catalyst for oxidative stress and the production of reactive oxygen species, which entails irreversible processes in the body, leading to chronic diseases and disability. This article contains a literature review of studies that prove the effect of the antioxidant properties of Curcuma longa on cells under oxidative stress. To search for data, a wide range of literature and databases was explored: Pubmed, Google.Scholar, and Embase.


Author(s):  
Marta Goschorska ◽  
Izabela Gutowska ◽  
Irena Baranowska-Bosiacka ◽  
Katarzyna Piotrowska ◽  
Emilia Metryka ◽  
...  

It has been reported that donepezil and rivastigmine, the acetylcholinesterase (AchE) inhibitors commonly used in the treatment of Alzheimer’s disease (AD), do not only inhibit AChE but also have antioxidant properties. As oxidative stress is involved in AD pathogenesis, in our study we attempted to examine the influence of donepezil and rivastigmine on the activity of antioxidant enzymes and glutathione concentration in macrophages—an important source of reactive oxygen species and crucial for oxidative stress progression. The macrophages were exposed to sodium fluoride induced oxidative stress. The antioxidant enzymes activity and concentration of glutathione were measured spectrophotometrically. The generation of reactive oxygen species was visualized by confocal microscopy. The results of our study showed that donepezil and rivastigmine had a stimulating effect on catalase activity. However, when exposed to fluoride-induced oxidative stress, the drugs reduced the activity of some antioxidant enzymes (Cat, SOD, GR). These observations suggest that the fluoride-induced oxidative stress may suppress the antioxidant action of AChE inhibitors. Our results may have significance in the clinical practice of treatment of AD and other dementia diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Wuyang Huang ◽  
Yunming Zhu ◽  
Chunyang Li ◽  
Zhongquan Sui ◽  
Weihong Min

The objective of this research was to survey the antioxidant functional role of the main anthocyanins of blueberries in endothelial cells. Changes on the reactive oxygen species (ROS), xanthine oxidase-1 (XO-1), superoxide dismutase (SOD), and heme oxygenase-1 (HO-1) in cells of malvidin and the two glycosides were investigated. The results showed that these anthocyanins decreased the levels of ROS and XO-1 but increased the levels of SOD and HO-1. Glycosides improved the antioxidant capacity of malvidin to a great extent. The changes in the antioxidant properties of malvidin-3-glucoside were more pronounced than malvidin-3-galactoside. Variation in levels of malvidin-3-glucoside and malvidin-3-galactoside had a significant impact on antioxidant properties to different extents. It indicates that blueberries are a good resource of anthocyanins, which can protect cells from oxidative deterioration and use blueberry as a potential functional food to prevent diseases related to oxidative stress.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1266
Author(s):  
Noelia Carballeda Sangiao ◽  
Susana Chamorro ◽  
Sonia de Pascual-Teresa ◽  
Luis Goya

Cocoa is a rich source of polyphenols, especially flavanols and procyanidin oligomers, with antioxidant properties, providing protection against oxidation and nitration. Cocoa phenolic compounds are usually extracted with methanol/ethanol solvents in order to obtain most of their bioactive compounds; however, aqueous extraction seems more representative of the physiological conditions. In this study, an aqueous extract of cocoa powder has been prepared and chemically characterized, and its potential protective effect against chemically-induced oxidative stress has been tested in differentiated human neuroblastoma SH-SY5Y cells. Neuronal-like cultured cells were pretreated with realistic concentrations of cocoa extract and its major monomeric flavanol component, epicatechin, and then submitted to oxidative stress induced by a potent pro-oxidant. After one hour, production of reactive oxygen species was evaluated by two different methods, flow cytometry and in situ fluorescence by a microplate reader. Simultaneously, reduced glutathione and antioxidant defense enzymes glutathione peroxidase and glutathione reductase were determined and the results used for a comparative analysis of both ROS (reactive oxygen species) methods and to test the chemo-protective effect of the bioactive products on neuronal-like cells. The results of this approach, never tested before, validate both analysis of ROS and indicate that concentrations of an aqueous extract of cocoa phenolics and epicatechin within a physiological range confer a significant protection against oxidative insult to neuronal-like cells in culture.


2020 ◽  
Vol 23 (1) ◽  
pp. 57-64
Author(s):  
M. A. Shirshakova ◽  
Elena A. Morozova

A smokers lips are more likely to change because of exposure to reactive oxygen species that contain oxygen in large quantities in tobacco smoke. Oxidative stress is a crucial factor in the development of smoking-related diseases, such as oral cancer, lung cancer, and chronic obstructive pulmonary diseases. The damaging effect occurs because of the imbalance between the generation of reactive oxygen species and their detoxification. Markers of oxidative stress include parameters of lipid peroxidation, the activity of glutathione and antioxidant enzymes, and oxidative DNA damage. The destruction of hyaluronic acid (HA), the only drug used to correct lip changes, in smokers is accelerated by its participation in reactions with active oxygen forms, and not just by pathemization because of enzymatic cleavage by hyaluronidase. Mannitol has strong antioxidant properties, which makes it an ideal auxiliary substance in the composition of fillers based on HA. The role of reactive oxygen species in the aging process and their effects on both endogenous HA and HA-based drugs developed for esthetic use are discussed. A review of drugs, based on mannitol with hyaluronic fillers, is provided. The inclusion of mannitol in hyaluronic fillers is an effective and safe way to improve both short-term and long-term esthetic effects of the HA injection.


2013 ◽  
Vol 25 (1) ◽  
pp. 269 ◽  
Author(s):  
V. H. Barnabe ◽  
R. C. Barnabe ◽  
P. Goes ◽  
E. G. A. Perez ◽  
J. D. A. Losano ◽  
...  

Bos taurus bulls, when raised under tropical conditions, are highly susceptible to heat stress, which leads to impaired semen quality, leading to significant economical losses because, in these regions, the reproductive mounting season occurs mainly during the summer. Previous studies have indicated that oxidative stress (i.e. attack by reactive oxygen species) may be the main mechanism of sperm damage in such conditions. Therefore, treatment with antioxidants may be an important alternative to improve semen quality in heat-stressed B. taurus bulls. The objective of the present study was to evaluate whether the treatment with vitamin E, an important antioxidant, could improve sperm quality in insulated bulls. Towards this aim, eight adult Holstein bulls were submitted for semen collection, and the sperm was submitted for motility evaluation by computer-assisted sperm analysis (Ivos, Hamilton Thorne Inc., Beverly, MA, USA), examination of membrane and acrosomal integrity (eosin/nigrosin and fast green/bengal rose stain, respectively), mitochondrial activity (diaminobenzidine stain; full mitochondrial activity or no mitochondrial activity), and sperm susceptibility to oxidative stress (thiobarbituric acid-reactive substances). Bulls were then insulated (testicles covered in a thermal bag for 3 days) and randomly assigned to two treatment groups: no vitamin E (placebo) and vitamin E (subcutaneous injection of 3000 IU of α-tocopherol each of 10 days). Subsequent semen analysis was performed 1 and 60 days after the insulation. Statistical analysis was performed with SAS (SAS Institute Inc., Cary, NC, USA) repeated-measures ANOVA, and significance of P < 0.05 was adopted. No differences were found on any of the variables before insulation. One day after insulation, animals treated with vitamin E showed a lower percentage of static sperm and a higher percentage of motile sperm when compared with animals treated with the placebo (28 and 63% v. 56 and 34%, respectively; P < 0.05). Also at this time, sperm susceptibility to oxidative stress was lower in animals treated with vitamin E (vitamin E: 410 ng/106 sperm; no vitamin E: 1760 ng/106 sperm; P < 0.05). Sixty days after insulation, sperm susceptibility to oxidative stress was still lower in animals treated with vitamin E when compared with the placebo group (1176 and 192 ng/106 sperm, respectively; P < 0.05). However, no differences were found on the other variables. Results indicate that vitamin E, an antioxidant whose main function is protection of the plasma membrane, may be an alternative to avoid the acute deleterious effects of the heat stress in B. taurus bulls raised under tropical conditions. In addition, even with no heat stress involved, vitamin E treatment may provide constant protection, increasing the resistance of the sperm against the reactive oxygen species.


2019 ◽  
Vol 20 (21) ◽  
pp. 5380 ◽  
Author(s):  
Brahim Arkoun ◽  
Ludovic Galas ◽  
Ludovic Dumont ◽  
Aurélie Rives ◽  
Justine Saulnier ◽  
...  

Freezing–thawing procedures and in vitro culture conditions are considered as a source of stress associated with increased reactive oxygen species (ROS) generation, leading to a damaged cell aerobic metabolism and consequently to oxidative stress. In the present study, we sought to investigate whether vitamin E (Vit E) or reduced glutathione (GSH) enhances sperm production by decreasing ROS accumulation during in vitro maturation of prepubertal mice testes. Testes of prepubertal mice were cryopreserved using a freezing medium supplemented or not supplemented with Vit E and were cultured after thawing. In presence of Rol alone in culture medium, frozen-thawed (F-T) testicular tissues exhibited a higher ROS accumulation than fresh tissue during in vitro culture. However, Vit E supplementation in freezing, thawing, and culture media significantly decreased cytoplasmic ROS accumulation in F-T testicular tissue during in vitro maturation when compared with F-T testicular tissue cultured in the presence of Rol alone, whereas GSH supplementation in culture medium significantly increased ROS accumulation associated with cytolysis and tissue disintegration. Vit E but not GSH promoted a better in vitro sperm production and was a suitable ROS scavenger and effective molecule to improve the yield of in vitro spermatogenesis from F-T prepubertal mice testes. The prevention of oxidative stress in the cytoplasmic compartment should be regarded as a potential strategy for improving testicular tissue viability and functionality during the freeze–thaw procedure and in vitro maturation.


2016 ◽  
Vol 23 (4) ◽  
pp. 25-42
Author(s):  
Asma A. Nashawi ◽  
Richard Hartley

Lipid peroxidation is the mediator of several pathophysiological events such atherosclerosis, neurodegenerative disease and others. It is induced by reactive oxygen species that react with biological substrates, leading to cell damage. It is thought that Nicotinamide Adenine Dinucleotide Phosphate Hydrogen oxidases, as well as mitochondria dysfunction and other sources, are at the centre of these events, so it becomes an important therapeutic target. In order to retard this damage and the progression of the disease, the natural and synthetic antioxidant vitamin E (Tocopherol) has been studied extensively. In this study, we briefly address current knowledge on the function of vitamin E and try to emphasize its antioxidant properties versus its other properties. The purpose of this study is to design and synthesize a new vitamin E analogue that is placed outside cells. The precursor to a new vitamin E analogue bearing two charges is prepared from the reaction of the corresponding (6acetoxy-2,5,7,8- tetramethylchroman-2-yl) acyl chloride compound that was directly treated with an aniline-2,5-disulfonic acid tetrabutylammonium salt. The latter, a newly prepared compound, is considered a target. The new tocopherol analogue of the product was expected to exhibit protection of lipid membrane from the oxidative damage behavior of reactive oxygen species.


Sign in / Sign up

Export Citation Format

Share Document