scholarly journals Biodegradation of phenanthrene in an anaerobic batch reactor: Growth kinetics

2010 ◽  
Vol 16 (2) ◽  
pp. 157-165 ◽  
Author(s):  
H.S. Nasrollahzadeh ◽  
G.D. Najafpour ◽  
M. Pazouki ◽  
H. Younesi ◽  
A.A. Zinatizadeh ◽  
...  

The purpose of present research was to demonstrate the ability of mixed consortia of microorganisms to degrade high concentrations of phenanthrene (PHE) as the sole carbon source. Batch experiments were carried out by induction of mineral salt medium containing PHE to the seed culture and monitoring PHE biodegradation. The microbial propagation was conducted using PHE concentrations in the range of 20 to 100 mg/l. The microbial growth on PHE was defined based on Monod and modified Logistic rate models. The kinetic studies revealed that maximum specific growth rates (?m) for PHE concentrations of 20, 50 and100 mg/l were 0.12, 0.23 and 0.035 h-1, respectively. The doubling times for microbial population in PHE concentrations of 20, 50 and100 mg/l were 13, 15 and 17.5h, respectively. Also, maximum cell dry weight (xm) of 54.23 mg/l was achieved, while the inhibition coefficient was 0.023 h-1. It was observed that the experimental data were well represented by the proposed models. It was also found that the biodegradation of PHE was successfully performed by the isolated strains.

2021 ◽  
Author(s):  
Sevtap Tırınk ◽  
Alper Nuhoğlu ◽  
Sinan Kul

Abstract This study encompasses investigation of treatment of pistachio processing industry wastewaters in a batch reactor under aerobic conditions, calculation of kinetic parameters and comparison of different inhibition models. The mixed microorganism culture used in the study was adapted to pistachio processing industry wastewaters for nearly one month and then concentrations from 50-1000 mg L− 1 of pistachio processing industry wastewaters were added to the medium and treatment was investigated in batch experiments. The Andrews, Han-Levenspiel, Luong and Aiba biokinetic equations were chosen for the correlations between the concentration of pistachio processing industry wastewaters and specific growth rates, and the kinetic parameters in these biokinetic equations were calculated. The µmax, Ks and Ki parameters, included in the Aiba biokinetic equation providing best fit among the other equations, had values calculated as 0.25 h− 1, 19 mg L− 1, and 516 mg L− 1, respectively.


1991 ◽  
Vol 23 (4-6) ◽  
pp. 755-763 ◽  
Author(s):  
M. Okada ◽  
A. Murakami ◽  
C. K. Lin ◽  
Y. Ueno ◽  
T. Okubo

Laboratory-scale sequencing batch reactor (SBR) activated sludge processes were operated using synthetic wastewater to clarify the effects of sludge retention time(SRT) and organic substrates on the accumulation of bio-P-bacteria. The accumulation of bio-P-bacteria could be enhanced by wide variation in concentration of organic substrates by giving a short fill period and sufficient anaerobic conditions. However, the accumulation could not be enhanced in the reactor operated with SRT less than 25 d in spite of the higher, more than 0.1 d−1, specific growth rates observed in the isolated strains of bio-P-bacteria. The specific growth rates of bio-P-bacteria were estimated at 0.040 d−1, 0.030 d−1 and 0.035 d−1 in the SBR activated sludge processes fed with sodium acetate (A), glucose and polypeptone (GP) and polypeptone (P), respectively. Therefore, a large sludge retention time would be necessary for the accumulation of bio-P-bacteria. Volatile fatty acids (VFA), such as sodium acetate (A), seemed to be more effective than other organic substrates (GP and P) for the accumulation of bio-P-bacteria in activated sludge ecosystems.


1997 ◽  
Vol 3 (4) ◽  
pp. 263-283 ◽  
Author(s):  
R.M. Nabais ◽  
F.X. Malcata

Increases in suspended biomass and variation in the concentrations of reducing sugars, salt, and lactic acid in brine containing sliced carrots were followed for a period of several days. A tentative unstructured, unsegregated model for the metabolism of suspended Lactobacillus plan tarum coupled with Fick's second law of diffusion for the transport of solutes within the carrot material was postulated. This general model was fitted by non-linear multiresponse regression analysis to an extensive set of experimental data encompassing several processing temperatures and initial brine concentrations. Maximum specific growth rates decreased with initial sodium chloride (NaCl) concentration and were maximal at ca 30°C leading to a peak concentration of reducing sugars in the brine. The lag phase of microbial growth in the brine is apparently disguised by the lag phase of sugar leaching from the carrots into the brine. Lactic acid was confirmed to be a growth-associated product. Intrinsic diffusivities of the various compounds considered ranged up to ca 10-11 m2/s, and varied with temperature according to the Arrhenius law; the maximum activation energy was at ca 8% (w/v) NaCl. The work developed is useful for the simulation and eventual optimization of pickled carrot manufacture.


2016 ◽  
Vol 75 (2) ◽  
pp. 378-386 ◽  
Author(s):  
Xi Lu ◽  
Zhixuan Yin ◽  
Dominika Sobotka ◽  
Kamil Wisniewski ◽  
Krzysztof Czerwionka ◽  
...  

The aim of the study was to determine the pH effects on nitrogen removal in the anammox-enriched granular sludge. The experimental data were extracted from a 4 L completely-mixed batch reactor with the granular sludge at different initial pH values (6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5) and constant temperature T = 30 °C. Simulations were run in GPS-X 6.4 using a comprehensive mechanistic model Mantis2. Two kinetic parameters, the maximum specific growth rates of ammonia oxidizing bacteria (AOB) and anammox bacteria, were optimized at different pH scenarios. The inhibitory effects of the pH extremes on the anammox-enriched sludge were discussed in terms of the inhibition of free nitrous acid and free ammonia and metabolic mechanisms. Two different pH functions were used to examine the pH effects on the nitrogen removal kinetics. The pH optima for AOB and anammox bacteria were 7.4 and 7.6, respectively. The maximum specific growth rates of AOB and anammox bacteria at the pH optima were 0.81–0.85 d−1 and 0.36–0.38 d−1 (at T = 30 °C). The measured specific anammox activities (SAAs), predicted SAAs by Mantis2 and fitted SAAs by the Michaelis pH function at the pH optima were 0.895, 0.858 and 0.831 gN/(gVSS·d), respectively (VSS: volatile suspended solids).


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Rinu Kooliyottil ◽  
Floyd Inman ◽  
Sivanadane Mandjiny ◽  
Len Holmes

Xenorhabdus nematophila, an entomopathogenic bacterium that symbiotically associates with the entomoparasitic nematode Steinernema carpocapsae, was studied to determine its physiological parameters of glucose utilization. X. nematophila was cultured in chemically defined media containing various concentrations of glucose under optimal conditions utilizing a two-liter fermentation system. Specific growth rates were obtained from each glucose batch. Specific growth rates and their associated glucose concentrations were used to determine physiological parameters. These parameters include the bacterium’s substrate utilization constant (Ks) and its maximum specific growth rate (μmax). The bacteria exhibited a Ks value of 2.02 mg/L suggesting that X. nematophila has a high affinity for glucose. The μmax of Xenorhabdus was determined to be 1.03 h−1. Further research is needed to determine if microbial affinities to different substrates have any influence on biological relationships (symbiosis, pathogenicity, parasitism, etc.) between prokaryotes and higher organisms.


1996 ◽  
Vol 31 (3) ◽  
pp. 485-504 ◽  
Author(s):  
Patricia Chow-Fraser ◽  
Barb Crosbie ◽  
Douglas Bryant ◽  
Brian McCarry

Abstract During the summer of 1994, we compared the physical and nutrient characteristics of the three main tributaries of Cootes Paradise: Spencer, Chedoke and Borer’s creeks. On all sampling occasions, concentrations of CHL α and nutrients were always lowest in Borer’s Creek and highest in Chedoke Creek. There were generally 10-fold higher CHL α concentrations and 2 to 10 times higher levels of nitrogen and phosphorus in Chedoke Creek compared with Spencer Creek. Despite this, the light environment did not differ significantly between Spencer and Chedoke creeks because the low algal biomass in Spencer Creek was balanced by a relatively high loading of inorganic sediments from the watershed. Laboratory experiments indicated that sediments from Chedoke Creek released up to 10 µg/g of soluble phosphorus per gram (dry weight) of sediment, compared with only 2 µg/g from Spencer Creek. By contrast, sediment samples from Spencer Creek contained levels of polycyclic aromatic hydrocarbon that were as high as or higher than those from Chedoke Creek, and much higher than those found in Borer’s Creek. The distribution of normalized PAH concentrations suggests a common source of PAHs in all three tributaries, most likely automobile exhaust, since there were high concentrations of fluoranthene and pyrene, both of which are derivatives of engine combustion.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 259-262 ◽  
Author(s):  
Bjarne R. Horntvedt ◽  
Morten Rambekk ◽  
Rune Bakke

This paper presents a strategy in which mixed biological cultures are exposed to oscillating concentration levels, to improve the potential for coexistence of desired bacterial species. A mechanistic mathematical model is constructed to investigate and illustrate this strategy. This paper is focused on competition between nitrifying, denitrifying and aerobic heterotrophic bacteria in a CSTR with sludge recycle. For nitrifying and aerobic heterotrophic cultures, the effect of sinusoidal oscillations in DO levels with an amplitude of 1.0 mg/l is a 16% specific growth rate reduction compared to that at a constant DO level. The denitrifiers growth rate is increased by an average of 59%, compared to the constant DO level situation. A similar strategy has been tested in a pilot plant. It is concluded that the influence on specific growth rates is a function of the amplitude of the oscillations. The effects are greatest when concentrations fluctuate around the half saturation concentration of the rate limiting component(s).


2007 ◽  
Vol 72 (7) ◽  
pp. 908-916 ◽  
Author(s):  
Payman Hashemi ◽  
Hatam Hassanvand ◽  
Hossain Naeimi

Sorption and preconcentration of Cu2+, Zn2+ and Fe3+ on a salen-type Schiff base, 2,2'- [ethane-1,2-diylbis(nitrilomethylidyne)]bis(2-methylphenol), chemically immobilized on a highly crosslinked agarose support, were studied. Kinetic studies showed higher sorption rates of Cu2+ and Fe3+ in comparison with Zn2+. Half-times (t1/2) of 31, 106 and 58 s were obtained for sorption of Cu2+, Zn2+ and Fe3+ by the sorbent, respectively. Effects of pH, eluent concentration and volume, ionic strength, buffer concentration, sample volume and interferences on the recovery of the metal ions were investigated. A 5-ml portion of 0.4 M HCl solution was sufficient for quantitative elution of the metal ions from 0.5 ml of the sorbent packed in a 6.5 mm i.d. glass column. Quantitative recoveries were obtained in a pH range 5.5-6.5 for all the analytes. The volumes to be concentrated exceeding 500 ml, ionic strengths as high as 0.5 mol l-1, and acetate buffer concentrations up to 0.3 mol l-1 for Zn2+ and 0.4 mol l-1 for Cu2+ and Fe3+ did not have any significant effect on the recoveries. The system tolerated relatively high concentrations of diverse ions. Preconcentration factors up to 100 and detection limits of 0.31, 0.16 and 1.73 μg l-1 were obtained for Cu2+, Zn2+ and Fe3+, respectively, for their determination by a flame AAS instrument. The method was successfully applied to the metal ion determinations in several river water samples with good accuracy.


2001 ◽  
Vol 58 (2) ◽  
pp. 386-393 ◽  
Author(s):  
John A Sweka ◽  
Kyle J Hartman

Brook trout (Salvelinus fontinalis) were held in an artificial stream to observe the influence of turbidity on mean daily consumption and specific growth rates. Treatment turbidity levels ranged from clear (<3.0 nephelometric turbidity units (NTU)) to very turbid water (> 40 NTU). Observed mean daily specific consumption rates were standardized to the mean weight of all brook trout tested. Turbidity had no significant effect on mean daily consumption, but specific growth rates decreased significantly as turbidity increased. Brook trout in turbid water became more active and switched foraging strategies from drift feeding to active searching. This switch was energetically costly and resulted in lower specific growth rates in turbid water as compared with clear water. Bioenergetics simulations were run to compare observed growth with that predicted by the model. Observed growth values fell below those predicted by the model and the difference increased as turbidity increased. Abiotic factors, such as turbidity, which bring about changes in the activity rates of fish, can have implications for the accuracy of predicted growth by bioenergetics models.


2018 ◽  
Vol 2017 (3) ◽  
pp. 661-666
Author(s):  
Xu Zeng ◽  
Jun Liu ◽  
Jianfu Zhao

Abstract Catalytic wet oxidation of high concentration pharmaceutical wastewater with Fe3+ as catalyst was carried out in a batch reactor. Results showed that the degradation of pharmaceutical wastewater was enhanced significantly by Fe3+. The effects of reaction parameters, such as the catalyst dose, reaction temperature, time, and initial oxygen pressure, were discussed. The chemical oxygen demand (COD) removal increased with the increases of catalyst dose, temperature, time and oxygen supply. With the initial COD 34,000–35,000 mg/L, approximately 70% COD removal can be achieved under the conditions of catalyst 1.0 g and oxygen pressure 1.0 MPa at 250 °C after 60 min. The results of kinetic studies showed that two reaction steps existed in this oxidation process, which followed an apparent first-order rate law. This process provides an effective approach for the pretreatment of high concentration pharmaceutical wastewater.


Sign in / Sign up

Export Citation Format

Share Document