scholarly journals Further study on kinetic modeling of sunflower oil methanolysis catalyzed by calcium-based catalysts

2016 ◽  
Vol 22 (2) ◽  
pp. 137-144 ◽  
Author(s):  
Marija Miladinovic ◽  
Marija Tasic ◽  
Olivera Stamenkovic ◽  
Vlada Veljkovic ◽  
Dejan Skala

The kinetic model, which was originally developed for sunflower oil methanolysis catalyzed by CaO.ZnO, was examined for several other calcium-based catalysts like neat CaO, quicklime and Ca(OH)2. This model including triacylglycerols mass transfer- and chemically-controlled regimes demonstrated a good agreement with the experimental data in terms of a high coefficient of determination (0.971?0.022) and acceptable mean relative percentage deviation (?15.9%). Hence, this model is recommended for modeling the kinetics of sunflower oil methanolysis over calcium-based catalysts under widely ranging reaction conditions.

2016 ◽  
Vol 22 (4) ◽  
pp. 409-418 ◽  
Author(s):  
Ana Velickovic ◽  
Jelena Avramovic ◽  
Olivera Stamenkovic ◽  
Vlada Veljkovic

The ethanolysis of sunflower oil catalyzed by calcium oxide was studied in wider ranges of the reaction conditions: temperature 65-75?C, ethanol-to-oil molar ratio 6:1-18:1 and catalyst loading 10-20% in order to determine the reaction kinetics. The proposed kinetic model of the sunflower oil ethanolysis included the changing and first-order reaction mechanism with respect to triacylglycerols and fatty acid ethyl esters. The kinetic parameters were determined and correlated with the process variables. The Arrhenius equation could be applied to the reaction rate constant with the activation energy of 94.0 kJ/mol. The proposed kinetic model showed a good agreement with the experimental data with the mean relative percentage deviation of ?13% (based on 256 data points).


1991 ◽  
Vol 56 (10) ◽  
pp. 2020-2029
Author(s):  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma ◽  
Rudolf Hladina

The authors proposed and treated quantitatively a kinetic model for deposition of epitaxial GaAs layers prepared by reaction of trimethylgallium with arsine in hydrogen atmosphere. The transport of gallium to the surface of the substrate is considered as the controlling process. The influence of the rate of chemical reactions in the gas phase and on the substrate surface on the kinetics of the deposition process is neglected. The calculated dependence of the growth rate of the layers on the conditions of the deposition is in a good agreement with experimental data in the temperature range from 600 to 800°C.


2016 ◽  
Vol 683 ◽  
pp. 402-405
Author(s):  
Natalya G. Bryantseva ◽  
Olga N. Tchaikovskaya ◽  
Vlada S. Kraiukhina ◽  
Maria Gómez ◽  
Jose Luis Gómez

Photodegradation of 5-Methoxypsoralen (5-MOP), 4', 5'-dimethyl-3,4-cyclogeksilpsoralen (KC5) and 4'-methyl-3,4 cycloheptylpsoralen (KC4) has been carried out in an XeBr exilamps, both in the presence of H2O2, and a kinetic model, which explains the dependence of the pseudo-first order kinetic parameter on the substrate concentration and other operational variables, has been developed. In the development of the model, mass transfer of 5-MOP, KC5 and KC4from the bulk solution to the wall of the vessel was assumed as the step determining the rate of the photodegradation process, which successfully explains some singularities observed in the experimental results.By fitting the experimental data to the model, a detailed study of the influence of all operational variables on the pseudo-first order kinetic parameter has been done, in good agreement with the model hypotheses.


2012 ◽  
Vol 16 (12) ◽  
pp. 1346-1352 ◽  
Author(s):  
Renata C. dos Reis ◽  
Ivano A. Devilla ◽  
Diego P. R. Ascheri ◽  
Ana C. O. Servulo ◽  
Athina B. M. Souza

The objective of this paper was to model the drying curves of the leaves of basil (Ocimum basilicum L.) in the infrared at temperatures of 50, 60, 70 and 80 ºC and to evaluate the influence of drying temperature on the color of dried leaves. Drying was conducted in infrared dryer with temperature and greenhouse air circulation. Experimental data were fitted to eight mathematical models. The magnitude of the coefficient of determination (R²), the mean relative error (P), the estimated mean error (SE) and chisquare test (χ2) were used to verify the degree of fitness of the models. From the study it was concluded that: a) the behavior of the drying curves of basil leaves was similar to most agricultural products, the drying times in the infrared were less than the drying times in an oven with air circulation, b) the mathematical drying model proposed by Midilli et al. (2002) was the one which best adjusted to the experimental data, c) the diffusion coefficient ranged from 9.10 x 10-12 to 2.92 x 10-11 m² s-1 and d) the color of the samples was highly influenced by drying, becoming darker due to loss of chlorophyll with increasing temperature.


2012 ◽  
Vol 608-609 ◽  
pp. 1375-1382
Author(s):  
Rui Zhang ◽  
Qin Hui Wang ◽  
Zhong Yang Luo ◽  
Meng Xiang Fang

As the first step in coal combustion and gasification, coal devolatilization has significant effect on reaction process. Previous coal devolatilization models have some disadvantages, such as poor flexibility, model complexity, and requirement of characterization parameters. Recently, Sommariva et al. have proposed a multi-step kinetic model of coal devolatilization. This model avoids the disadvantages mentioned above and can predict elemental composition of tar and char. In this paper, the mechanism of this model has been revised for simple application to Chemkin. Revision method is that some reactions are split into more reactions by using one pseudo-intermediate-product to replace several final products. Simulation results show that calculation results from revised mechanism compare quite well with that from original mechanism and have good agreement with experimental data. The revised mechanism is accurate and can be applied to Chemkin very easily, which gives it wide application to simulation of coal pyrolysis, gasification and combustion.


2016 ◽  
Vol 14 (4) ◽  
pp. 929-938 ◽  
Author(s):  
Gabriel E. Galván Muciño ◽  
Rubi Romero ◽  
Armando Ramírez ◽  
María Jesús Ramos ◽  
Ramiro Baeza-Jiménez ◽  
...  

Abstract The kinetics of the transesterification of safflower oil and methanol catalyzed by K2O/NaX was studied and modeled. The influence of the oil-methanol initial molar ratio and amount of catalyst were investigated to achieve a maximum triglycerides conversion (99 %) and a final methyl esters content of 94 % ±1. A kinetic model based on an Eley–Rideal mechanism was found to best fit the experimental data when assuming methanol adsorption as determining step. Other models derived from Langmuir – Hinshelwood – Hougen –Watson (LHHW) mechanisms were rejected based on statistical analysis, mechanistic considerations and physicochemical interpretation of the estimated parameters.


Author(s):  
Iztok Hace

Free radical polymerization kinetics of diallyl terephthalate (DAT) in solution was investigated with two different peroxide initiators: dicyclohexyl peroxydicarbonate (CHPC) and benzoyl peroxide (BPO) in temperature range from 50°C to 110°C, where ortho-xylene was used as a solvent. Conversion points were measured using Fourier Transform Infrared (FTIR) measurements. Previously developed kinetic model for bulk DAT polymerization, was extended to solution DAT polymerization. The ratio of solvent chain - transfer rate constants to propagation rate constants of the polymerization system were found between 1.25 10-4 to 1.68 10-4 for various reaction conditions. They were obtained using the calculated initial polymerization rates and the number average molecular weight measurements made by GPC. The effect of different solvent fractions and initiator concentrations on the diffusion limitations were investigated. Only two kinetic parameters, kpd0 and ktd0 were obtained by fitting the kinetic model onto measured conversions for various reaction conditions at 0.2, 0.5 and 0.8 solvent fractions. Thus obtained kpd0 and ktd0 kinetic parameters were extrapolated to zero solvent fractions and from obtained values of kinetic parameters the conversion points for bulk DAT polymerization were calculated and compared to measured conversion points.


2010 ◽  
Vol 660-661 ◽  
pp. 593-598 ◽  
Author(s):  
Kássia Graciele dos Santos ◽  
Taisa S. Lira ◽  
Valéria V. Murata ◽  
Marco Gianesella ◽  
Marcos A.S. Barrozo

The pyrolysis kinetics of sugarcane bagasse in nitrogen flow was studied by thermogravimetric analysis from room temperature to 1173 K at different heating rates (1.5, 3, 5, 10, 15, 20, 30 and 50 K/min). As there are three distinct devolatilization peaks in the DTG curve, each peak was associated to thermal decomposition of an individual biomass subcomponent (hemicellulose, cellulose and lignin). The kinetic model adopted was a consecutive reactions model. The kinetic parameters of the pyrolysis process, such as activation energy and pre-exponential factor, were calculated by least squares non-linear method and Scilab are used as the simulation tool. The simulated results showed a good agreement with the experimental data and the parameters found are similar to reported by the literature.


2021 ◽  
Vol 8 (2) ◽  
pp. 53-62
Author(s):  
Hendri Syah ◽  
Armansyah Halomoan Tambunan ◽  
Edy Hartulistiyoso ◽  
Lamhot Parulian Manalu

The objectives of this study were to determine a suitable thin layer drying model to describe the drying kinetics of Guazuma ulmifolia leaves and determine the mass transfer parameters of Guazuma ulmifolia leaves. The drying of Guazuma ulmifolia leaves was conducted in a laboratory scale dryer with various temperature (40oC, 50oC, and 60oC) and relative humidity (30%, 40%, 50% and 60%). Five drying models, namely, Newton, Henderson and Pabis, Page, Midilli-Kucuk, and Verma et al. were fitted to the drying data. The drying curve of guazuma leaves did not show a constant drying period during the drying period. The models suitability were compared base on coefficient of determination (R2), root square mean errors (RSME), and reduced mean square of deviation (X2). It was found that, among the models evaluated, the Midilli and Kucuk model is the best to describe the drying kinetics of Guazuma ulmifolia leaves. The effective moisture diffusivity was found to be in the range of 10-13 – 10-12 m2/s and the convective mass transfer coefficient was in the range of 10-9 – 10-10 m/s. The activation energy value was found to be 89.21 kJ/mol.


2019 ◽  
Vol 488 (2) ◽  
pp. 157-161
Author(s):  
S. D. Varfolomeev ◽  
N. A. Semenova ◽  
V. I. Bykov ◽  
S. B. Tsybenova

A kinetic model describing the impulse of increasing oxygen in the excited nervous tissue of the human brain in response to an external signal is presented. The model is based on biochemical data and describes experimental data on an impulsed hemodynamic response. The model predicts the dynamic behavior of the process participants, which preceding the oxygen impulse and determining the level of the BOLD-signal.


Sign in / Sign up

Export Citation Format

Share Document