Pyrolysis of Sugarcane Bagasse: A Consecutive Reactions Kinetic Model from TGA Experiments

2010 ◽  
Vol 660-661 ◽  
pp. 593-598 ◽  
Author(s):  
Kássia Graciele dos Santos ◽  
Taisa S. Lira ◽  
Valéria V. Murata ◽  
Marco Gianesella ◽  
Marcos A.S. Barrozo

The pyrolysis kinetics of sugarcane bagasse in nitrogen flow was studied by thermogravimetric analysis from room temperature to 1173 K at different heating rates (1.5, 3, 5, 10, 15, 20, 30 and 50 K/min). As there are three distinct devolatilization peaks in the DTG curve, each peak was associated to thermal decomposition of an individual biomass subcomponent (hemicellulose, cellulose and lignin). The kinetic model adopted was a consecutive reactions model. The kinetic parameters of the pyrolysis process, such as activation energy and pre-exponential factor, were calculated by least squares non-linear method and Scilab are used as the simulation tool. The simulated results showed a good agreement with the experimental data and the parameters found are similar to reported by the literature.

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1763 ◽  
Author(s):  
Samy Yousef ◽  
Justas Eimontas ◽  
Nerijus Striūgas ◽  
Mohammed Ali Abdelnaby

Recently, a pyrolysis process has been adapted as an emerging technology to convert metalized food packaging plastics waste (MFPWs) into energy products with a high economic benefit. In order to upscale this technology, the knowledge of the pyrolysis kinetic of MFPWs is needed and studying these parameters using free methods is not sufficient to describe the last stages of pyrolysis. For a better understanding of MFPWs pyrolysis kinetics, independent parallel reactions (IPR) kinetic model and its modification model (MIPR) were used in the present research to describe the kinetic parameters of MFPWs pyrolysis at different heating rates (5–30 °C min−1). The IPR and MIPR models were built according to thermogravimetric (TG)-Fourier-transform infrared spectroscopy (FTIR)-gas chromatography−mass spectrometry (GC-MS) results of three different types of MFPWs (coffee, chips, and chocolate) and their mixture. The accuracy of the developed kinetic models was evaluated by comparing the conformity of the DTG experimental results to the data calculated using IPR and MIPR models. The results showed that the dependence of the pre-exponential factor on the heating rate (as in the case of MIPR model) led to better conformity results with high predictability of kinetic parameters with an average deviation of 2.35% (with an improvement of 73%, when compared to the IPR model). Additionally, the values of activation energy and pre-exponential factor were calculated using the MIPR model and estimated at 294 kJ mol−1 and 5.77 × 1017 kJ mol−1 (for the mixed MFPW sample), respectively. Finally, GC-MS results illustrated that pentane (13.8%) and 2,4-dimethyl-1-heptene isopropylcyclobutane (44.31%) represent the main compounds in the released volatile products at the maximum decomposition temperature.


2013 ◽  
Vol 772 ◽  
pp. 313-318
Author(s):  
Hong Shuang Du ◽  
Xiang Yu Li ◽  
Xue Yong Ren ◽  
Yan Xue Han

The larch bark was examined by non-isothermal means to determine the mass loss kinetics of the thermal decomposition with linear temperature programming in nitrogen atmosphere. In this work, mechanism equation of = was used forCoats-Redfern integral methodat the different heating rates. The apparent activation energy, pre-exponential factor and the pyrolysis kinetic equations at the different heating rates were obtained. The pyrolysis temperature area was divided into two separate temperature regions for the pyrolysis kinetic equation and the two components were decomposed respectively at the two separate temperature regions. The global mass loss rate of the bark is considered as controlled respectively by the reactions of the two components respectively during the lower and higher temperature ranges. The kinetics of the two components are found to abide by the mechanism equation of =, which gave the best fits to the experimental data. The obtained kinetic equations of the bark at the different heating rates were additionally validated by the reasonable agreement between the experimental and calculated results.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Christiano Bruneli Peres ◽  
André Henrique Rosa ◽  
Leandro Cardoso de Morais

AbstractBiomass is considering a source of organic carbon, which can replace fossil resources by using pyrolysis process, therefore an efficient biomass thermal modification technology has been target of so much research. The objective of this work is to study the potential energy of sugarcane bagasse and thermochemically modified bagasse for bioenergy potential for use in heat generation and energy. The thermal analysis was conducted by powder-shaped exposure of the three study samples (SB, AC-1, and AC-2) at three heating rates of (5, 7.5 and 10 °C min−1), it was possible to identify three stages of thermal degradation and study some thermochemical reactions, using two iso-conversional models, Kissinger–Akahira–Sunose (KAS) and Ozawa–Flynn–Wall (OFW) to calculate some kinetic parameters, such as activation energy (Ea) and pre-exponential factor (A). First step was about the devolatilization of volatile matter, moisture, and other substances. Degradation of hemicellulose, cellulose and lignin were shown in a second step. Characterization analyzes, such as SEM–EDX and textural parameters of the samples, show the presence of carbon in samples SB and AC-1. Due to SEM analyzes, morphological differences between the samples are showing as AC-1 and AC-2 samples present a rougher shape with pores, on the other hand, SB sample show a fibrous shape. In conclusion, sugarcane bagasse and thermochemically modified bagasse, show very promising results, for future studies, such as for bioenergy potential.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3977
Author(s):  
Magdalena Matusiak ◽  
Radosław Ślęzak ◽  
Stanisław Ledakowicz

The main purpose of this paper was to compare the pyrolysis kinetics of three types of energy crops: Miscanthus giganteus, Sida hermaphrodita, and Sorghum Moench. Studies were conducted in thermobalance. Feedstock samples were heated up from ambient temperature to 600 °C under an inert argon atmosphere. Three heating rates of β = 5, 10, and 20 °C/min were applied. Reactions occurring in the given temperature ranges were grouped together into so-called lumps identified by the deconvolution of derivative thermogravimetry (DTG) curves that corresponded to biomass compositions (hemicellulose, cellulose, and lignin). For the estimation of the activation energy and pre-exponential factor, the Friedman and Ozawa–Flynn–Wall methods were used. The final kinetic parameters were determined by nonlinear regression assuming that thermal decomposition proceeded via three parallel independent reactions of the nth order. The activation energy of hemicellulose, cellulose and lignin was determined to be in the range of 92.9–97.7, 190.1–192.5, and 170–175.2 kJ/mol, respectively. The reaction order was in the range of 3.35–3.99 for hemicellulose, 1.38–1.93 for cellulose, and 3.97–3.99 for lignin. The obtained results allow us to estimate the pyrolytic potential of energy crops selected for this study, and can be used in designing efficient pyrolizers for these materials.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 791
Author(s):  
Fotis Christakopoulos ◽  
Enrico Troisi ◽  
Theo A. Tervoort

The melting behavior of nascent poly(tetrafluoroethylene) (PTFE) was investigated by way of differential scanning calorimetry (DSC). It is well known that the melting temperature of nascent PTFE is about 344 ∘ C, but reduces to 327 ∘ C for once molten material. In this study, the melting temperature of nascent PTFE crystals was found to strongly depend on heating rate, decreasing considerably for slow heating rates. In addition, during isothermal experiments in the temperature range of 327 ∘ C < T < 344 ∘ C, delayed melting of PTFE was observed, with complete melting only occurring after up to several hours. The melting kinetics of nascent PTFE were analyzed by means of the isoconversional methodology, and an apparent activation energy of melting, dependent on the conversion, was determined. The compensation effect was utilized in order to derive the pre-exponential factor of the kinetic model. The numerical reconstruction of the kinetic model was compared with literature models and an Avrami-Erofeev model was identified as best fit of the experimental data. The predictions of the kinetic model were in good agreement with the observed time-dependent melting of nascent PTFE during isothermal and constant heating-rate experiments.


2014 ◽  
Vol 955-959 ◽  
pp. 2803-2808
Author(s):  
Ren Ping Liu ◽  
Rui Yao ◽  
Hui Li

Gentamicin bacteria residue contains high organic compound. The technology of thermochemical conversion can effectively solve the problem of bulk gentamicin residue disposal, research on pyrolysis kinetics of the reaction is the basic work for thermochemical conversion . In this paper, Pyrolysis experiments were carried out in a thermogravimetric analyzer under inert conditions and operated at different heating rates (5, 10, 20 K/min).Two different kinetic models, the iso-conversional Ozawa–Flynn–Wall (Ozawa) models and Satava method were applied on TGA data of gentamicin residue to calculate the kinetic parameters including activation energy, pre-exponential factor and Mechanism function. The results showed that: gentamicin bacteria residue lost most weight of it between 100-650 °C , about 74.23% of the whole sample can decompose under high temperature. The pyrolysis function for gentamicin residue should be G(α) =[-ln(1-α)]3.


1991 ◽  
Vol 56 (10) ◽  
pp. 2020-2029
Author(s):  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma ◽  
Rudolf Hladina

The authors proposed and treated quantitatively a kinetic model for deposition of epitaxial GaAs layers prepared by reaction of trimethylgallium with arsine in hydrogen atmosphere. The transport of gallium to the surface of the substrate is considered as the controlling process. The influence of the rate of chemical reactions in the gas phase and on the substrate surface on the kinetics of the deposition process is neglected. The calculated dependence of the growth rate of the layers on the conditions of the deposition is in a good agreement with experimental data in the temperature range from 600 to 800°C.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Anil Kumar Varma ◽  
Prasenjit Mondal

The present study was conducted to investigate the physicochemical properties and pyrolysis kinetics of sugarcane bagasse (SB). The physiochemical properties of SB were determined to examine its potential for pyrolysis. The physiochemical properties such as proximate analysis, ultimate analysis, heating values, lignocellulosic composition, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) of SB were investigated. The pyrolysis experiments were conducted in a nonisothermal thermogravimetric analyzer (TGA) to understand the thermal degradation behavior of SB. The activation energy (Ea) of SB pyrolysis was calculated by model-free Kissinger–Akahira–Sunose (KAS) and Ozawa–Flynn–Wall (OFW) methods. Average values of activation energy determined through KAS and OFW methods are found as 91.64 kJ/mol and 104.43 kJ/mol, respectively. Variation in the activation energy with degree of conversion was observed, which shows that pyrolysis is a complex process composed of several reactions. Coats–Redfern method was used to calculate the pre-exponential factor and reaction order. Conversion of SB due to heat treatment computed by using the kinetic parameters is found to be in good agreement with the experimental conversion data, and the maximum error limit between the experimental and predicted conversions is 8.5% for 5 °C/min, 6.0% for 10 °C/min, and 11.6% for 20 °C/min. The current investigation proves the suitability of SB as a potential feedstock for pyrolysis.


2012 ◽  
Vol 455-456 ◽  
pp. 872-879 ◽  
Author(s):  
Yan Bao ◽  
Jia Wu ◽  
Xiao Ping Hu

The oxidation of N-phosphonomethyliminodiacetic acid (PMIDA) to prepare glyphosate (PMG) over active carbon was investigated. Experiments were carried out with O2 as the oxidizing agent in a 150-mL autoclave made in stainless steel, with reaction temperature ranging from 323.15 to 353.25K and the pressure from 0.12 to 0.40 MPa. The macro kinetic model of the reactions in series was developed, and the pre-exponential factor and activation energy were estimated from the measured data in experiments. The influence of dissolved oxygen concentration was also considered in this macro kinetic model. The results indicated that the two step reactions are all one-order to reactant (PMIDA or PMG) and 0.3 or 0.07 to O2 respectively. The active energy was 12.98kJ/mol for the first step reaction and 10.87kJ/mol for the second step reaction.


Sign in / Sign up

Export Citation Format

Share Document