scholarly journals Compressional behavior of knitted fabrics exposed to repeated wash and wear cycles

2006 ◽  
Vol 60 (5-6) ◽  
pp. 129-137 ◽  
Author(s):  
Snezana Stankovic

The quality requirements of knitted fabrics nowadays have become highly demanding in terms of appearance and comfort properties. It is well known that yarns are subjected to tension, bending, torsion and compression during the wear and care of apparels. The appropriate selection of raw materials could be the way to reduce the deformation of knits caused by mechanical forces. Keeping in mind the fact that natural fibers and man-made fibers can significantly differ in respect to elastic properties, natural fiber and synthetic fiber knits were produced for the experiment. The experimental material included three different variants of knitted fabrics: 100% hemp knit, 100% PAC knit and hemp 50%/PAC 50% knit. The behavior of knitted fabrics during the relaxation of compression was investigated. In order to indicate the change of the compressional properties of knitted fabrics, the same investigation after undergoing repeated wash and wear cycles (during eight weeks) was repeated. Although the structure of the tested samples was the same, there were differences in the compressional behavior of the knitted fabrics. It is obvious that the differences in the elastic properties of hemp and PAC fibers were projected into the knits. Compression curves were drawn in order to obtain an insight into the change of the compressional behavior of knitted fabrics during wear. These curves also enabled a comparative estimation of the compressional behavior of knits made of different yarn components. The surfaces proportional to the work of the compression for each of the cycles, as well as the work of compression between the first and the fifth cycles, of loading-unloading cycles were calculated. In order to compare the tested knitted fabrics, the hysteresis of compression was analyzed from the aspect of ability of elastic recovery. The change in compressional behavior of knits exposed to wear and care cycles was confirmed. However, analysis of the comparative compression behavior of knits before and after wear, indicated differences between the tested samples. The mechanical model for the lateral compression of fabrics derived from van Wyk's compression law, which explains the relationship between the pressure and volume of a fiber mass during compression is well known in the literature. In order to obtain a comprehensive insight into the compressional behavior of knitted fabrics, the results obtained were approximated with van Wyk'a equation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taslima Ahmed Tamanna ◽  
Shah Alimuzzaman Belal ◽  
Mohammad Abul Hasan Shibly ◽  
Ayub Nabi Khan

AbstractThis study deals with the determination of new natural fibers extracted from the Corypha taliera fruit (CTF) and its characteristics were reported for the potential alternative of harmful synthetic fiber. The physical, chemical, mechanical, thermal, and morphological characteristics were investigated for CTF fibers. X-ray diffraction and chemical composition characterization ensured a higher amount of cellulose (55.1 wt%) content and crystallinity (62.5%) in the CTF fiber. The FTIR analysis ensured the different functional groups of cellulose, hemicellulose, and lignin present in the fiber. The Scherrer’s equation was used to determine crystallite size 1.45 nm. The mean diameter, specific density, and linear density of the CTF fiber were found (average) 131 μm, 0.86 g/cc, and 43 Tex, respectively. The maximum tensile strength was obtained 53.55 MPa for GL 20 mm and Young’s modulus 572.21 MPa for GL 30 mm. The required energy at break was recorded during the tensile strength experiment from the tensile strength tester and the average values for GL 20 mm and GL 30 mm are 0.05381 J and 0.08968 J, respectively. The thermal analysis ensured the thermal sustainability of CTF fiber up to 230 °C. Entirely the aforementioned outcomes ensured that the new CTF fiber is the expected reinforcement to the fiber-reinforced composite materials.


2015 ◽  
Vol 754-755 ◽  
pp. 235-239
Author(s):  
A. Zuliahani ◽  
H.D. Rozman ◽  
Abdul Rahman Rozyanty

The use of natural fiber as reinforcement in polymer composites has gained importance recently due to environmental concern and its abundance availability from agricultural crops and wood industry [1]. Many advantages offered by natural fibers over synthetic fibers include low density, greater deformability, low cost per unit volume, recyclability and biodegradability [2-3]. In addition, the mechanical properties of natural fibers such as flax, hemp, jute, sisal and kenaf are comparable with glass fiber in respect of strength and modulus [4]. Hence, many studies have been carried out to replace the synthetic fiber for composite preparation.


2021 ◽  
Author(s):  
◽  
David Laidler

<p>The relationship between notions of ‘history’ and ‘myth’ is a familiar dilemma within the field of historiography. As this thesis will seek to demonstrate, myth – defined here as evaluative representations of the past to suit demands of the present – is virtually indistinguishable from history, insofar as both are constructed from the same raw materials: subjective remembrances. Through an examination of mythical representations of physical places, this thesis will present a model to explain how myth is constructed, thereby emphasising the intimate and problematic relationship between the aforementioned categories.    In short, myth making occurs when memories travel through liminal space from one individual to the next, with said liminal points allowing for degradation and transmutation. The further along one is in the chain, the more one is dependent on myth. Through electing to focus on two such locales that have been of particular interest to me – Harlem during the jazz age and The Bronx during the origins of hip hop – I was able to adopt an auto-ethnographic perspective, gaining insight into the extent to which my understanding was dependent on a series of compounding representations. Further, these areas also draw attention to how such representation can broaden or localise, depending on the myth and the purpose of its invocation. In different contexts and different historical narratives, different areas within New York City have been subjected to the same process, which can account for the pervasive idea of ‘New York’ that continues to circulate.</p>


2020 ◽  
Vol 10 (2) ◽  
pp. 37-42
Author(s):  
Irwan Suriaman ◽  
Mardiyati ◽  
Jooned Hendrarsakti ◽  
Ari Darmawan Pasek

Industry 4.0 era materials used by entrepreneurs should be recycled, environmentally friendly, renewable with less chemical content. Indonesia as a tropical country has a large land area with the potential to produce the largest natural fiber in the world. One opportunity that can be applied to the utilization of natural fibers in air filters that currently use dominant materials is synthetic fibers. natural fiber has the advantage because it does not contain toxic chemicals, local raw materials, and is easily produced. This research will analyze the mechanical and morphological characteristics of biological fibers that have great potential as pre-filter raw material. Analysis of mechanical properties through tensile strength testing for single fibers and morphological analysis through scanning electron microscopy (SEM). Tensile testing was the results are; palm oil has a tensile strength of 620 MPa; 998 MPa and 213 MPa flax coconut fiber. For the morphological test results from SEM analysis for ramie fiber, it looks solid without fiber holes; The fibers appear to be many small fibers bound to one another while coir fibers have many pore holes in one observed fiber.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4603
Author(s):  
Marfa Camargo ◽  
Eyerusalem Adefrs Taye ◽  
Judith Roether ◽  
Daniel Tilahun Redda ◽  
Aldo Boccaccini

The use of ecological materials for building and industrial applications contributes to minimizing the environmental impact of new technologies. In this context, the cement and geopolymer sectors are considering natural fibers as sustainable reinforcement for developing composites. Natural fibers are renewable, biodegradable, and non-toxic, and they exhibit attractive mechanical properties in comparison with their synthetic fiber counterparts. However, their hydrophilic character makes them vulnerable to high volumes of moisture absorption, thus conferring poor wetting with the matrix and weakening the fiber–matrix interface. Therefore, modification and functionalization strategies for natural fibers to tailor interface properties and to improve the durability and mechanical behavior of cement and geopolymer-based composites become highly important. This paper presents a review of the physical, chemical and biological pre-treatments that have been performed on natural fibers, their results and effects on the fiber–matrix interface of cement and geopolymer composites. In addition, the degradation mechanisms of natural fibers used in such composites are discussed. This review finalizes with concluding remarks and recommendations to be addressed through further in-depth studies in the field.


1999 ◽  
Vol 5 (S2) ◽  
pp. 270-271
Author(s):  
Travis C Baroni ◽  
Brendan J Griffin ◽  
Frank J Lincoln

Charge Contrast Imaging (CCI), is a recently reported technique allowing the imaging of the internal microstructure of non and poorly conductive materials. In previous work, the relationship between controlled growth events in batch-precipitated gibbsite, Al(OH)3 and the appearance of contrasting bands in CCIs has been empirically correlated. The data presented was spatial, based on the number and dimensions of growth rings, however no interpretation of the contrast variation was made. Suggestions that the contrast may be related to charge trapping, which in turn is related to conductivity pathways and impurity concentrations indicates that the technique may provide insight into crystallisation processes. The current work examines the spatial distribution of impurity elements and their effect on the contrast observed within growth layers in charge contrast images of gibbsite.Analyses for Ca, Fe and Si, the main impurities in the solutions before and after precipitation indicate a preferential partitioning of Ca and to a lesser extent Si and Fe into gibbsite.


Author(s):  
Sergio Pons Ribera ◽  
Rabah Hamzaoui ◽  
Johan Colin ◽  
Benitha Vasseur ◽  
Laetitia Bessette ◽  
...  

This work, which is part of the FIBRABETON project, aims to anti-fissuration screed formulations proposition based on natural fibers and comparing these formulations to a synthetic fiber-screed formulation. Different natural fiber (hemp, flax, miscanthus and bamboo) with contents rangingfrom 0.4% to 0.8% were tested. The spread (slump), the shrinkage and mechanical strength (flexural and compressive) studies were carried out. SEM images of natural fibers and natural fibers screed formulation were analyzed. Overall, it is found that all natural fibers screed formulations tested, have shown better behaviour than the synthetic fibers screed formulation in point of view workability, shrinkage and mechanical properties. The lowest shrinkage value is found in the case of the H5 (5 mm long hemp fibers) screed formulation. Generally speaking, the mechanical strength values (flexural and compressive) are more or less similar between natural soft fibers (hemp and flax) and rigid fibers (miscanthus and bamboo). Taking in account slump, shrinkage and mechanical behavior, the proposed good compromise in this work is the H5 screed formulation.


2019 ◽  
pp. 089270571988909 ◽  
Author(s):  
Vardaan Chauhan ◽  
Timo Kärki ◽  
Juha Varis

Interest in natural fiber-reinforced polymer (NFRP) composites is growing rapidly in the transportation sector, especially as a replacement material for metals and synthetic fiber composites. The heightened interest is directly related to a need to produce lightweight and fuel efficient vehicles. Further, stringent legislation and greater environmental awareness is forcing transportation industries to select materials with a smaller carbon footprint. In such a context, NFRP composite materials are a good choice due to their low cost, low environmental impact, and relatively equivalent properties to metals and other composites. Most prior studies have examined commodity plastics such as polypropylene, polyethylene, and epoxy as the primary polymer matrix in NFRP composites and little work has addressed engineering plastics. Engineering plastics, which includes polycarbonate, polyamides, and polystyrene, are high performance thermoplastics with superior properties but relatively higher cost than commodity plastics. It has been claimed that even after recycling, engineering plastics properties are superior to those of commodity plastics, and thus, utilization of recycled engineering plastic in NFRP composites can help reduce waste and lower composite material costs. The aim of this review article is to explore the current status of engineering plastics reinforced with natural fibers such as flax, hemp, jute, and sisal and to examine their use in automotive, aerospace, and maritime applications. Properties and processing techniques of engineering plastics reinforced with natural fibers are also studied.


2013 ◽  
Vol 781-784 ◽  
pp. 1037-1043 ◽  
Author(s):  
Zheng Gen Liao ◽  
Liang Shan Ming ◽  
Jing Zhang ◽  
Nan Zhang ◽  
Shao Jin Zhong ◽  
...  

Microcrystalline Cellulose andHerba Sarcandraewere used to study the properties and relationship of powders before and after blending. The theoretical values of the physical quantities of the binary mixture were calculated based on the random mixing theory, The measured values of particle size specific surface area, pore volume and angle of repose of binary mixture had larger values than that of theoretical calculations. Whereas, tapped density and bulk density had a smaller value. The results suggested that the mixing behavior was not a complete random, arbitrary or simple superposition of the operation for coarse and sticky particles. The mixing process would create novel particles and physical quantities of novel particles exist regular changes.


2001 ◽  
Vol 702 ◽  
Author(s):  
Prabhu Kandachar ◽  
Rik Brouwer

ABSTRACTAvailable as agricultural resources in many countries, natural fibers, such as flax, hemp, kenaf, exhibit mechanical properties comparable to those of synthetic fibers like glass. But they are lighter, biodegradable, and are often claimed to be less expensive. Composites with these natural fibers have the potential to be attractive alternative to synthetic fiber composites. The natural fibers, however, exhibit more scatter in their properties, are thermally less stable and are sensitive to moisture absorption. The choice of matrix to reinforce with these fibers therefore becomes critical.Currently, synthetic non-biodegradable polymers, such as polypropylene, polyester, etc., are being explored as matrix materials, for applications in sectors like automobiles and buildings. Biodegradable polymers, if made available in sufficient quantities at affordable prices, pave way for bio-composites in future. With both matrix and fibers being biodegradable, bio-composites become attractive candidates from the environment point of view.Extensive and reliable property data on natural fiber composites and/or on bio-composites, are still lacking, making product design with these materials rather tedious. Once the database is available, design & manufacture of products with natural fiber composites and biocomposites offer several opportunities and challenges.


Sign in / Sign up

Export Citation Format

Share Document