scholarly journals Analysis of new forms of orifice plates using computational fluid dynamics

2019 ◽  
Vol 73 (5) ◽  
pp. 311-323
Author(s):  
Dragan Halas ◽  
Oskar Bera ◽  
Radovan Omorjan ◽  
Aleksandar Rajic ◽  
Danijela Jasin

In many technologies, such as process industry or water supply, there is a need to measure fluid flowrates. Orifice plates are the most common instruments for measuring the fluid flowrate through pipelines due to their many advantages. On the other side, their use increases operating costs of industrial plants and pipelines. In this work, three new forms of orifice plates were designed and tested. These new forms and one standard, which served as a reference, were designed by using the SolidWorks software package. The aim of the new designs was energy savings, and consequently reduction of operating costs. Energy savings can be achieved by such a design, which decreases the orifice plate resistance an element of the pipeline. This was achieved by increasing the open part of the orifice plate permitting the fluid flow. CAD models of orifice plates were transferred to STL files that were further used for CFD simulation as well as 3D printing of experimental replicas. According to the proposed algorithm, the new designs were tested by CFD simulation performed in the COMSOL Multiphysics software package, by using a finite-difference method. Equations used were based on the Reynolds form of Navier-Stokes equations (RANS, Reynolds-averaged Navier-Stokes), and the continuity equation for incompressible fluids. Next, as we have proposed in our algorithm of development of new orifice plate designs, experimental orifice plates were made by using 3D printing technology and FDM (Fused Deposition Modeling) procedure and tested at laboratory conditions. The results of laboratory tests were compared with the results of CFD simulation. A considerable amount of energy saving was indicated, which was achieved already by the first of the three new orifice plate forms (V1) as compared to the reference (V0). For the other two proposed forms, the effect of energy savings was considerably lower. By using CFD simulation, data can be obtained based on which a decision can be made whether the new shape of the measuring device should be corrected or is appropriate for further laboratory tests. Based on the presented results it can be concluded that the proposed testing algorithm proved useful in designing new forms of orifice plates.

2012 ◽  
Vol 17 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Rosalind Potts ◽  
Robin Law ◽  
John F. Golding ◽  
David Groome

Retrieval-induced forgetting (RIF) refers to the finding that the retrieval of an item from memory impairs the retrieval of related items. The extent to which this impairment is found in laboratory tests varies between individuals, and recent studies have reported an association between individual differences in the strength of the RIF effect and other cognitive and clinical factors. The present study investigated the reliability of these individual differences in the RIF effect. A RIF task was administered to the same individuals on two occasions (sessions T1 and T2), one week apart. For Experiments 1 and 2 the final retrieval test at each session made use of a category-cue procedure, whereas Experiment 3 employed category-plus-letter cues, and Experiment 4 used a recognition test. In Experiment 2 the same test items that were studied, practiced, and tested at T1 were also studied, practiced, and tested at T2, but for the remaining three experiments two different item sets were used at T1 and T2. A significant RIF effect was found in all four experiments. A significant correlation was found between RIF scores at T1 and T2 in Experiment 2, but for the other three experiments the correlations between RIF scores at T1 and T2 failed to reach significance. This study therefore failed to find clear evidence for reliable individual differences in RIF performance, except where the same test materials were used for both test sessions. These findings have important implications for studies involving individual differences in RIF performance.


1985 ◽  
Vol 54 (04) ◽  
pp. 739-743 ◽  
Author(s):  
Federica Delaini ◽  
Elisabetta Dejana ◽  
Ine Reyers ◽  
Elisa Vicenzi ◽  
Germana De Bellis Vitti ◽  
...  

SummaryWe have investigated the relevance of some laboratory tests of platelet function in predicting conditions of thrombotic tendency. For this purpose, we studied platelet survival, platelet aggregation in response to different stimuli, TxB2 and 6-keto-PGFlα production in serum of rats bearing a nephrotic syndrome induced by adriamycin. These animals show a heavy predisposition to the development of both arterial and venous thrombosis. The mean survival time was normal in nephrotic rats in comparison to controls. As to aggregation tests, a lower aggregating response was found in ADR-treated rats using ADP or collagen as stimulating agents. With arachidonic acid (AA) we observed similar aggregating responses at lower A A concentrations, whereas at higher AA concentrations a significantly lower response was found in nephrotic rats, despite their higher TxB2 production. Also TxB2 and 6-keto-PGFlα levels in serum of nephrotic rats were significantly higher than in controls. No consistent differences were found in PGI2-activity generated by vessels of control or nephrotic rats.These data show that platelet function may appear normal or even impaired in rats with a markedly increased thrombotic tendency. On the other hand, the significance of high TxB2 levels in connection with mechanisms leading to thrombus formation remains a controversial issue.


Liquidity ◽  
2016 ◽  
Vol 5 (1) ◽  
pp. 53-64
Author(s):  
Yumniati Agustina

Investigation in various regions in Indonesia found indications of the alleged fraud that result from unccountable use and management of BOS funds. Among the findings, including payments that do not fit the technical guidelines, no accountability report, and the use of funds with unaccountable receipt. In the Regulation of the Minister of Education and Culture of the Republic of No. 161/2014, stated that: BOS is a government program that is basically forfunding the nonpersonnel operating costs of the primary education as the implementer of compulsory education program. The purpose of this study were (1) to analyze the accounting cycle and financial accountability for the use of BOS funds in the 2015, (2) to analyze the compliance of the accounting cycle and financial accountability of the BOS funds, (3) to analyze the transparency and accountability of BOS fund’s reports. The observed elementary school is SDIT X in Depok, West Java. Result shows that they do not fully compliance to the appropriate regulatory technical guidelines. On the other hand, the transparency and accountability issues show that: (1) BOS Management Team, Teachers Council and School’s Committee’s involvement in the BOS fund management, and (2) evaluation and comparison of the final report of prior periods, so that transparency and accountability of the use and management of BOS funds can be improved.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


Author(s):  
Juan Sebastian Cuellar ◽  
Dick Plettenburg ◽  
Amir A Zadpoor ◽  
Paul Breedveld ◽  
Gerwin Smit

Various upper-limb prostheses have been designed for 3D printing but only a few of them are based on bio-inspired design principles and many anatomical details are not typically incorporated even though 3D printing offers advantages that facilitate the application of such design principles. We therefore aimed to apply a bio-inspired approach to the design and fabrication of articulated fingers for a new type of 3D printed hand prosthesis that is body-powered and complies with basic user requirements. We first studied the biological structure of human fingers and their movement control mechanisms in order to devise the transmission and actuation system. A number of working principles were established and various simplifications were made to fabricate the hand prosthesis using a fused deposition modelling (FDM) 3D printer with dual material extrusion. We then evaluated the mechanical performance of the prosthetic device by measuring its ability to exert pinch forces and the energy dissipated during each operational cycle. We fabricated our prototypes using three polymeric materials including PLA, TPU, and Nylon. The total weight of the prosthesis was 92 g with a total material cost of 12 US dollars. The energy dissipated during each cycle was 0.380 Nm with a pinch force of ≈16 N corresponding to an input force of 100 N. The hand is actuated by a conventional pulling cable used in BP prostheses. It is connected to a shoulder strap at one end and to the coupling of the whiffle tree mechanism at the other end. The whiffle tree mechanism distributes the force to the four tendons, which bend all fingers simultaneously when pulled. The design described in this manuscript demonstrates several bio-inspired design features and is capable of performing different grasping patterns due to the adaptive grasping provided by the articulated fingers. The pinch force obtained is superior to other fully 3D printed body-powered hand prostheses, but still below that of conventional body powered hand prostheses. We present a 3D printed bio-inspired prosthetic hand that is body-powered and includes all of the following characteristics: adaptive grasping, articulated fingers, and minimized post-printing assembly. Additionally, the low cost and low weight make this prosthetic hand a worthy option mainly in locations where state-of-the-art prosthetic workshops are absent.


2021 ◽  
Vol 14 (2) ◽  
pp. 143
Author(s):  
Julius Krause ◽  
Laura Müller ◽  
Dorota Sarwinska ◽  
Anne Seidlitz ◽  
Malgorzata Sznitowska ◽  
...  

In the treatment of pediatric diseases, suitable dosages and dosage forms are often not available for an adequate therapy. The use of innovative additive manufacturing techniques offers the possibility of producing pediatric dosage forms. In this study, the production of mini tablets using fused deposition modeling (FDM)-based 3D printing was investigated. Two pediatric drugs, caffeine and propranolol hydrochloride, were successfully processed into filaments using hyprolose and hypromellose as polymers. Subsequently, mini tablets with diameters between 1.5 and 4.0 mm were printed and characterized using optical and thermal analysis methods. By varying the number of mini tablets applied and by varying the diameter, we were able to achieve different release behaviors. This work highlights the potential value of FDM 3D printing for the on-demand production of patient individualized, small-scale batches of pediatric dosage forms.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2601
Author(s):  
Yue Ba ◽  
Yu Wen ◽  
Shibin Wu

Recent innovations in 3D printing technologies and processes have influenced how landscape products are designed, built, and developed. In landscape architecture, reduced-size models are 3D-printed to replicate full-size structures. However, high surface roughness usually occurs on the surfaces of such 3D-printed components, which requires additional post-treatment. In this work, we develop a new type of landscape design structure based on the fused deposition modeling (FDM) technique and present a laser polishing method for FDM-fabricated polylactic acid (PLA) mechanical components, whereby the surface roughness of the laser-polished surfaces is reduced from over Ra 15 µm to less than 0.25 µm. The detailed results of thermodynamics and microstructure evolution are further analyzed during laser polishing. The stability and accuracy of the results are evaluated based on the standard deviation. Additionally, the superior tensile and flexural properties are examined in the laser-polished layer, in which the ultimate tensile strength (UTS) is increased by up to 46.6% and the flexural strength is increased by up to 74.5% compared with the as-fabricated components. Finally, a real polished landscape model is simulated and optimized using a series of scales.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1192
Author(s):  
Dong-Hyun Kim ◽  
Jong-Chun Park ◽  
Gyu-Mok Jeon ◽  
Myung-Soo Shin

In this paper, the efficiency of Propeller Boss Cap Fins (PBCF) installed at the bulk carrier was estimated under both Propeller Open Water (POW) and self-propulsion conditions. For this estimation, virtual model-basin tests (resistance, POW, and self-propulsion tests) were conducted through Computational Fluid Dynamics (CFDs) simulation. In the resistance test, the total resistance and the wake distribution according to ship speed were investigated. In the POW test, changes of thrust, torque coefficient, and open water efficiency on the propeller according to PBCF installation were investigated. Finally, the International Towing Tank Conference (ITTC) 1978 method was used to predict the effect of PBCF installation on self-propulsive coefficient and brake horsepower. For analyzing incompressible viscous flow field, the Reynolds-Averaged Navier–Stokes (RANS) equation with SST k-ω turbulence model was calculated using Star-CCM+ 11.06.010-R8. All simulation results were validated by comparing the results of model tests conducted at the Korea Research Institute of Ships and Ocean Engineering (KRISO). Consequently, for the self-propulsion test with the PBCF, a 1.5% reduction of brake horsepower was estimated in the simulation and a 0.5% reduction of the brake horsepower was estimated in the experiment.


2021 ◽  
Vol 11 (6) ◽  
pp. 2563
Author(s):  
Ivan Grgić ◽  
Vjekoslav Wertheimer ◽  
Mirko Karakašić ◽  
Željko Ivandić

Recent soft tissue studies have reported issues that occur during experimentation, such as the tissue slipping and rupturing during tensile loads, the lack of standard testing procedure and equipment, the necessity for existing laboratory equipment adaptation, etc. To overcome such issues and fulfil the need for the determination of the biomechanical properties of the human gracilis and the superficial third of the quadriceps tendons, 3D printed clamps with metric thread profile-based geometry were developed. The clamps’ geometry consists of a truncated pyramid pattern, which prevents the tendons from slipping and rupturing. The use of the thread application in the design of the clamp could be used in standard clamping development procedures, unlike in previously custom-made clamps. Fused deposition modeling (FDM) was used as a 3D printing technique, together with polylactic acid (PLA), which was used as a material for clamp printing. The design was confirmed and the experiments were conducted by using porcine and human tendons. The findings justify the usage of 3D printing technology for parts manufacturing in the case of tissue testing and establish independence from the existing machine clamp system, since it was possible to print clamps for each prepared specimen and thus reduce the time for experiment setup.


Sign in / Sign up

Export Citation Format

Share Document