scholarly journals Effects of Temperature on the Tribological Properties of NM600 under Sliding Wear

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4009
Author(s):  
Yingchao Pei ◽  
Dianxiu Xia ◽  
Shouren Wang ◽  
Liang Cong ◽  
Xuelin Wang ◽  
...  

An investigation on the tribological properties of GCr15 sliding against NM600 was carried out using a high-temperature friction and wear tester. As the temperature rose from room temperature to 300 °C, the average friction coefficient of NM600 increased rapidly, then decreased rapidly, and then became stable. The wear volume and specific wear rate of NM600 increased rapidly, then decreased rapidly, and then increased slowly. The wear mechanism and matrix properties of the tested steel at different temperatures are the main reasons for the above results. At 20–50 °C, the main wear mechanism was adhesive wear, fatigue wear, and abrasive wear. At 100–150 ℃, the wear mechanism was mainly adhesive wear, fatigue wear, abrasive wear, and oxidation wear. At 200–300 °C, the wear mechanism was mainly oxidation wear and abrasive wear.


2021 ◽  
Vol 57 (1) ◽  
pp. 97-104
Author(s):  
D.-B. Wei ◽  
X. Zhou ◽  
F.-K. Li ◽  
M.-F. Li ◽  
S.-Q. Li ◽  
...  

To improve the wear resistance of ?-TiAl alloy, Ta alloy layer was prepared on surface by double glow plasma surface alloying technique. The tribology behavior of Ta alloy layer against Si3N4 at 25?, 350? and 500? were comparatively studied. The results showed that Ta alloy layer comprised a deposition layer and a diffusion layer. The deposition layer played a role in protection as a soft film. With the increase of temperature, the wear mechanism of ?-TiAl changed from abrasive wear to coexistence of abrasive wear and oxidation wear. Ta alloy layer?s wear mechanism changed from adhesive wear to coexistence of adhesive wear and oxidation wear. Surface Ta alloying process significantly reduced the wear volume, the specific wear rate and the friction coefficient of ?-TiAl and improved the wear resistance properties of ?-TiAl.



2013 ◽  
Vol 423-426 ◽  
pp. 939-943 ◽  
Author(s):  
Qi Feng Jing ◽  
Ye Fa Tan ◽  
Hui Yong Ji ◽  
Xiao Long Wang ◽  
Li Gao ◽  
...  

Setellite21 cobalt-based alloy coating was deposited on 45 steel by electro-spark deposition. Microstructure and phase composition of the coating were analyzed. Wear resistance and wear mechanism of the coating were researched. The results indicate that the coating with compact structure is mainly composed of Co, Co6W6C, CoCx and CoCr. Average microhardness of the coating is 445.34 HV0.5, which is about 2 times to that of the substrate. The coating presents excellent wear resistance with no obvious peelings and scratches. Wear resistance of the coating is about 2.3~2.7 times to that of the substrate. Wear mechanism of the coating mainly contains abrasive wear and fatigue wear, and along with oxidization wear.



2017 ◽  
Vol 898 ◽  
pp. 879-889
Author(s):  
Chen Yang Shu ◽  
Hai Yan Chen ◽  
Xuan Zhao ◽  
Yu Long Qi ◽  
Li Hua Dong ◽  
...  

Microstructure and tribological characteristics of WC/Ni-based plasma transferred arc welding (PTAW) overlays have been investigated. WC/Ni-based composite overlays were deposited under same conditions with different percent of WC particle (20-70 wt.%) in the 304L stainless steel. Reciprocating wear tests were undertaken according to the ASTM G133-05 standard. Microstructure and surface micrographs of the cross-section and worn surfaces were characterized. The results indicated that the wear rate decreased with the increasing percent of WC particle, revealing no visible decrease in wear when the percent of WC particle reached more than 50 wt.%. Coating with 50 wt.% WC particle possessed a fine abrasion resistance due to a homogeneous microstructure. Furthermore, at a low concentration (20 wt.% to 40 wt.%), the wear mechanism were adhesive wear and oxidation wear, whereas in 50wt.% WC particle, the main wear mechanism were adhesive wear and abrasive wear. In the case of high concentration of WC particle (above 50 wt.%), the predominant wear mechanism was three-body abrasive wear.



2014 ◽  
Vol 933 ◽  
pp. 159-164 ◽  
Author(s):  
Hui Bo He ◽  
Wen Qiang Han ◽  
Hua Ying Li ◽  
Jun Yang ◽  
Tao Gu

In order to explore the effect of TiN and TiAlN coatings on tribological properties and efficiency of gear, TiN and TiAlN coatings were deposited on 45 steel and the surface of gears by Arc Ion Plating technique. The dry tribological behavior of the substrate and coatings were tested in a ball-on-disk tribometer. The microcosmic morphology of the wear areas were observed by scanning electron microscope and energy dispersive spectrum. The wear mechanism of TiN and TiAlN coatings were investigated to assess the performance of the coatings. The efficiency of uncoated and coated gear was obtained and compared at various input rotating speeds. The results showed that TiN and TiAlN coatings provide a significant decrease of average friction coefficients compared with substrate. The wear mechanisms TiN and TiAlN coatings are mainly abrasive and adhesive wear, accompanied with adhesive and oxidation wear. The efficiency of gear has been significantly enhanced after TiN and TiAlN coatings deposition.



Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 735
Author(s):  
Songchen Wang ◽  
Xianchen Yang ◽  
Xinmei Li ◽  
Cheng Chai ◽  
Gen Wang ◽  
...  

The objective of this study was to investigate the wear characteristics of the U-shaped rings of power connection fittings, and to construct a wear failure prediction model of U-shaped rings in strong wind environments. First, the wear evolution and failure mechanism of U-shaped rings with different wear loads were studied by using a swinging wear tester. Then, based on the Archard wear model, the U-shaped ring wear was dynamically simulated in ABAQUS, via the Umeshmotion subroutine. The results indicated that the wear load has an important effect on the wear of the U-shaped ring. As the wear load increases, the surface hardness decreases, while plastic deformation layers increase. Furthermore, the wear mechanism transforms from adhesive wear, slight abrasive wear, and slight oxidation wear, to serious adhesive wear, abrasive wear, and oxidation wear with the increase of wear load. As plastic flow progresses, the dislocation density in ferrite increases, leading to dislocation plugs and cementite fractures. The simulation results of wear depth were in good agreement with the test value of, with an error of 1.56%.



Author(s):  
Shao Lifan ◽  
Ge Yuan ◽  
Kong Dejun

In order to improve the friction and wear properties of Cu10Al–MoS2 coating, the addition of CeO2 is one of the present research hot spots. In this work, Cu10Al–MoS2 coatings with different CeO2 mass fractions were successfully fabricated on Q235 steel using a laser cladding. The microstructure and phase compositions of obtained coatings were analyzed using an ultra-depth of field microscope and X-ray diffraction, respectively. The friction-wear test was carried out under oil lubrication using a ball-on-disk wear tester, and the effects of CeO2 mass fraction on the microstructure, hardness, and friction-wear properties were studied, and the wear mechanism was also discussed. The results show that the laser cladded Cu10Al–MoS2 coatings with the different CeO2 mass fractions were mainly composed of Cu9Al4, Cu, AlFe3, Ni, MoS2, and CeO2 phases. The Vickers-hardness (HV) of Cu10Al–8MoS2–3CeO2, Cu10Al–8MoS2–6CeO2, and Cu10Al–8MoS2–9CeO2 coatings was 418, 445, and 457 HV0.3, respectively, which indicates an increase in hardness with the increase of CeO2 mass fraction. The average coefficients of friction (COF) and wear rates decrease with the increase of CeO2 mass fraction, presenting the outstanding friction reduction and wear resistance performances. The wear mechanism of Cu10Al–MoS2 coatings is changed from abrasive wear with slight fatigue wear to abrasive wear with the increase of CeO2 mass fraction.



Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1456
Author(s):  
Qiang Wang ◽  
Runling Qian ◽  
Ju Yang ◽  
Wenjuan Niu ◽  
Liucheng Zhou ◽  
...  

In order to improve the wear resistance of 27SiMn steel substrate, Fe−based alloy coatings were prepared by laser cladding technology in the present study. In comparison to the conventional gravity powder feeding (GF) process, high−speed powder feeding (HF) process was used to prepare Fe−based alloy coating on 27SiMn steel substrate. The effect of diversified energy composition of powder materials on the microstructure and properties of coatings were systematically studied. X−ray diffractometer (XRD), optical microscope (OM) and scanning electron microscope (SEM) were used to analyze the phase structure and microstructure of Fe−based alloy coatings, and the hardness and tribological properties were measured by the microhardness tester and ball on disc wear tester, respectively. The results show that the microstructure of conventional gravity feeding (GF) coatings was composed of coarse columnar crystals. In comparison, owing to the diversification of energy composition, the microstructure of the high−speed powder feeding (HF) coatings consists of uniform and small grains. The total energy of the HF process was 75.5% of that of the GF process, proving that high−efficiency cladding can be achieved at lower laser energy. The refinement of the microstructure is beneficial to improve the hardness and wear resistance of the coating, and the hardness of the HF coating increased by 9.4% and the wear loss decreased to 80.5%, compared with the GF coating. The wear surface of the HF coating suffered less damage, and the wear mechanism was slightly adhesive wear. In contrast, wear was more serious in the GF coating, and the wear mechanism was transformed into severe adhesive wear.



2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yongshui Shen ◽  
Tongjin Sun ◽  
Tao Zhu ◽  
Ying Xiong

Abstract A laser shock peening (LSP) layer, a micro-arc oxidation (MAO) coating, and an LSP/MAO composite coating were fabricated on the surface of AZ80 magnesium alloy by laser shock and micro-arc oxidation process. The ball-disc grinding method was used to perform wear test on the three treated specimens in simulated body fluids (SBF) with pH values of 4, 7.4 and 9. The morphology and element content of worn surface were investigated by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The results indicated that the wear rates of the three treated specimens in three pH environment in numerical order were pH 4 > pH 7.4 > pH 9, respectively. The wear rates of the three treated specimens in the same pH environment were arranged in the order of MAO > LSP > LSP/MAO, respectively. The main wear mechanisms of the LSP specimen in pH 4 environment were fatigue wear and corrosion wear, while it were corrosion wear and adhesive wear in pH 7.4 and pH 9 environments. Abrasive wear, fatigue wear and corrosion wear were the main wear mechanisms of the MAO specimen in pH 4 environment, while abrasive wear, adhesive wear and corrosion wear were the main wear mechanisms of that in pH 7.4 and pH 9 environments. The corrosion wear resistance of the LSP/MAO specimen in SBF solution with three pH values was improved due to the synergism of LSP fine crystal layer and MAO coating.



2019 ◽  
Vol 11 (1) ◽  
pp. 56-61
Author(s):  
Wei Yuan ◽  
Shengkai Mei ◽  
Song Li ◽  
Zhiwen Wang ◽  
Jie Yu ◽  
...  

Background: Grooves may inevitably occur on the surface of the friction pair caused by severe wear or residual stress, which will play an important role on the reliability of machine parts during operation. Objective: The effect of the micro-grooves perpendicular to sliding direction on the wear performance of the friction pairs should be studied. Method: Micro-grooves can be machined on discs of friction pairs using electrical discharge machining. On-line visual ferrograph method was used to monitor the wear process to research the wear rate changing characteristic. Profilemeter and metallurgical microscope were used to observe the wear scars. Results: Comparing to the non-groove test, i) in one-groove test, wear volume and rate were approximate the same, and the wear scar was smooth, ii) when the grooves more than 4, the test running-in stage will be obviously prolonged, particularly for the test with 8 grooves on the disc, the duration of running-in stage is 4 times than that without grooves on specimen, and the wear rate and volume increase significantly, and then decrease with fluctuation, iii) the abrasive wear can be avoid with the debris stagnating in the groove, however, fatigue wear will significantly emerge. Conclusion: Abrasive wear can be avoided and smooth running-in surfaces can be obtained with proper amount of initial radial micro-grooves.



2011 ◽  
Vol 188 ◽  
pp. 32-37 ◽  
Author(s):  
An Hai Li ◽  
Jun Zhao ◽  
Z.Q. Pei ◽  
S.G. Guo

The failure progression of coated carbide tools in end milling of Inconel 718 superalloy was investigated. Tool wear was measured and failure mechanisms were discussed in the experimental process periodically. The experimental results indicated that the tool failure mechanisms were synergistic interaction among abrasive wear, adhesive wear, and fatigue wear. However, abrasive wear and adhesive wear were the main failure mechanisms at the beginning, fatigue wear prevailed the upper hand around the time when edge chipping appeared, and after edge chipping abrasive wear and adhesive wear dominated until the failure time. In addition, the macroscopic failure of the cutting tools is closely correlated to the nucleation and propagation of the crack under cyclic mechanical and thermal impact forces. Mechanical fatigue wear was the key form of fatigue wear at lower cutting speed, while at higher cutting speed thermal fatigue wear was the dominant fatigue wear.



Sign in / Sign up

Export Citation Format

Share Document