scholarly journals Mechanical characterization of copper coatings electrodeposited onto different substrates with and without ultrasound assistance

2019 ◽  
Vol 84 (7) ◽  
pp. 729-741 ◽  
Author(s):  
Ivana Mladenovic ◽  
Jelena Lamovec ◽  
Vesna Jovic ◽  
Marko Obradov ◽  
Dana Vasiljevic-Radovic ◽  
...  

The mechanical properties of systems consisting of copper coatings electrodeposited on both brass sheet (BS) and thick electrodeposited nickel coating (ED Ni) substrates have been investigated. The electrodeposition of copper coatings was performed with and without the ultrasound assistance. The ultrasound application decreases root mean square (RMS) roughness of deposited Cu coating on both applied substrates, as obtained from non-contact AFM measurement. The coating roughness is highly dependent on the substrate roughness, being the smallest for the Cu coatings deposited on ED Ni substrate with the ultrasound mixing. The hardness and adhesion properties were characterized using the Vickers microindentation test. Model of Korsunsky was applied to the experimental data for determination the film hardness and the model of Chen-Gao was used for the adhesion evaluation. The introduction of ultrasonic agitation caused the changes in the film microstructure, and consequently in the mechanical properties. The copper coatings on both substrates, have higher hardness when deposited from electrolyte with ultrasound agitation. Although the type of the substrate has the major influence on the adhesion strength, it can be said that Cu electrodeposition with ultrasonic mixing contributes to an increase in adhesion.

2015 ◽  
Vol 3 (9) ◽  
pp. 1769-1778 ◽  
Author(s):  
Zhiyong Li ◽  
Yunlan Su ◽  
Baoquan Xie ◽  
Xianggui Liu ◽  
Xia Gao ◽  
...  

A novel physically linked double-network (DN) hydrogel was prepared by natural polymer KGM and synthetic polymer PAAm. The DN hydrogels exhibit good mechanical properties, cell adhesion properties, and can be freely shaped, making such hydrogels promising for tissue engineering scaffolds.


2020 ◽  
pp. 002199832098004
Author(s):  
M Hussain ◽  
A Imad ◽  
A Saouab ◽  
T Kanit ◽  
Y Nawab ◽  
...  

Fibre metal laminates (FML) are being used in automotive, aerospace and naval applications due to their light weight and superior performance. The FMLs are made by sandwiching composite with metal. The environmental concerns due to non-biodegradability of such structures, lead to the development of FML containing natural fibre composites. Natural fibres composite, despite having good damping properties have overall poor mechanical properties. However, this aspect can be improved by weaving the fibres in 3 D pattern. In literature, FML made using 3 D woven jute composites is never reported. Furthermore, no literature is found on adhesion of natural fibre composite-metal bonding. In this paper, development of novel 3 D Jute Reinforced natural fibre Aluminium Laminates (JuRALs) is reported. Furthermore, the effect of 3 D weaving pattern and metal-composite bonding on mechanical properties and failure mechanism of the developed samples is also discussed in detail. The four-layered 3 D woven Jute fabric reinforcement was made using four interlocking patterns. The composites and JuRALs were fabricated using epoxy resin by vacuum infusion technique. The surface of aluminium was treated using phosphoric acid anodizing. Tensile, flexural and T-peel tests were performed according to ASTM testing method using Z100 All-round, Zwick Roell. The results showed that out of four types of used reinforcements, the through-thickness composites had better tensile properties while layer-to-layer composite had better flexural properties. The tensile and flexural properties of JuRALs made with through-thickness interlock reinforcement were better as compared to layer-to-layer interlock reinforcement. The T-peel results depicted that the constituent materials influenced the metal-composite adhesion properties, rather the type of 3 D structure.


2020 ◽  
Vol 8 (26) ◽  
pp. 5682-5693
Author(s):  
Xinchen Du ◽  
Yujie Hou ◽  
Le Wu ◽  
Shilin Li ◽  
Ao Yu ◽  
...  

An anti-infective TA/hydrogel with non-swelling and adhesion properties could close wounds in a non-invasive way.


2003 ◽  
Vol 778 ◽  
Author(s):  
Lorraine C. Wang ◽  
Reinhold H. Dauskardt

AbstractControlling material properties over nanometer length scales is crucial for current and emerging high-density microelectronic device packages. Miniaturization of devices is increasingly limited by the ability to “connect” to the device, and the required packaging structures must be fabricated where layer thickness and feature sizes approach micron size scales while achieving the required mechanical, thermal and electrical properties. Second phase additions such as sub-micron sized particles are often added to locally adjust the material properties of constituent layers in the complex package structure. This results in significant variation of mechanical properties over sub-micron length scales. Such manipulation of material structure and its effects on mechanical and interfacial fracture behavior are addressed using experimental and modeling studies. Underfill layers consisting of an epoxy matrix with dispersed silica beads are shown to exhibit variations of elastic and flow properties in excess of three-fold across the layer thickness. Mechanical properties are not only affected by the distribution of second-phase fillers, but also by the adhesion properties of the filler/matrix interface. Interfaces are susceptible to stress corrosion cracking associated with moisture which can lead to progressive debond growth at loads much lower than that required to exceed the critical interface fracture energies. Subcritical debonding is affected by temperature, humidity, and the bond chemistry of the interface. The effects of these variations are considered on the adhesive and subcritical debonding behavior of interfaces between model epoxy underfills and SiNx chip passivation. Implications for other constrained complex layered structures are considered.


2020 ◽  
Vol 4 (4) ◽  
pp. 162
Author(s):  
Mohamed Ali Charfi ◽  
Ronan Mathieu ◽  
Jean-François Chatelain ◽  
Claudiane Ouellet-Plamondon ◽  
Gilbert Lebrun

Composite materials are widely used in various manufacturing fields from aeronautic and aerospace industries to the automotive industry. This is due to their outstanding mechanical properties with respect to their light weight. However, some studies showed that the major flaws of these materials are located at the fiber/matrix interface. Therefore, enhancing matrix adhesion properties could significantly improve the overall material characteristics. This study aims to analyze the effect of graphene particles on the adhesion properties of carbon fiber-reinforced polymer (CFRP) through interlaminar shear strength (ILSS) and flexural testing. Seven modified epoxy resins were prepared with different graphene contents. The CFRP laminates were next manufactured using a method that guarantees a repeatable and consistent fiber volume fraction with a low porosity level. Short beam shear and flexural tests were performed to compare the effect of graphene on the mechanical properties of the different laminates. It was found that 0.25 wt.% of graphene filler enhanced the flexural strength by 5%, whilst the higher concentrations (2 and 3 wt.%) decreased the flexural strength by about 7%. Regarding the ILSS, samples with low concentrations (0.25 and 0.5 wt.%) demonstrated a decent increase. Meanwhile, 3 wt.% slightly decreases the ILSS.


Sign in / Sign up

Export Citation Format

Share Document