scholarly journals Modelling of the adsorption of chlorinated phenols on polyethylene and polyethylene terephthalate microplastic

2020 ◽  
Vol 85 (5) ◽  
pp. 697-709
Author(s):  
Maja Loncarski ◽  
Aleksandra Tubic ◽  
Marijana Kragulj-Isakovski ◽  
Branislav Jovic ◽  
Tamara Apostolovic ◽  
...  

The role of microplastics (MPs) on the fate and transport of various pollutants in water matrices is of major concern, but it is still relatively under investigated. In order to consider the conditions in real aquatic environments, the changes to polyethylene (PE) structure during the fabrication of microplastic particles for specific uses should not be neglected. Thus, this work considers isolated PE from two types of personal care products, which are possible sources of microplastic contamination in aquatic environments. The adsorption affinity of these PE microplastics towards ionisable compounds was compared with those of standards of PE and polyethylene terephthalate (PET), using chlorinated phenols (4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol) as adsorbates. The pseudo-second order kinetic model described well the sorption process for all chlorinated phenols on all four types of MPs (R2 range: 0.900?0.998). The kinetic study showed that sorption rates are mainly controlled by hydrophobic interactions and molecule size. Adsorption isotherms were best described by the Freundlich model for all MPs. The obtained results indicate that MPs could serve for the transport of chlorinated phenols through ambient waters.

2011 ◽  
Vol 6 (3) ◽  
pp. 155892501100600 ◽  
Author(s):  
Fang Li ◽  
Chunmei Ding

Different degree of deacetylation (DD) chitosan was prepared and used for the removal of a Reactive black M-2R (RBM) from aqueous solution. The effects of temperature (298 K~323 K), chitosan dosage, degree of deacetylation on RBM removal were investigated. The adsorption equilibrium was reached within one hour. In order to determine the adsorption capacity, the sorption data were analyzed by using linear form of Langmuir, Freundlich and Tempkin isotherm equation. Langmuir equation shows higher conformity than the other two equations. From the kinetic experiment data, it was found that the sorption process follows the pseudo-second-order kinetic model. Activation energy value for sorption process was found to be 58.28 kJ mol-1. Chitosan with 66% deacetylation degree (DD) exhibited good adsorption performance for RBM. In order to determine the interactions between RBM and chitosan, FTIR analysis was also conducted.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1899 ◽  
Author(s):  
Jun ◽  
Kim ◽  
Han ◽  
Yoon ◽  
Kim ◽  
...  

For this study, we applied activated biochar (AB) and its composition with magnetite (AB-Fe3O4) as adsorbents for the removal of polychlorophenols in model wastewater. We comprehensively characterized these adsorbents and performed adsorption tests under several experimental parameters. Using FTIR, we confirmed successful synthesis of AB-Fe3O4 composite through cetrimonium bromide surfactant. We conducted adsorption tests using AB and AB-Fe3O4 to treat model wastewater containing polychlorophenols, such as 2,3,4,6-Tetrachlorophenol (TeCP), 2,4,6-Trichlorophenol (TCP), and 2,4-Dichlorophenol (DCP). Results of the isotherm and the kinetic experiments were well adapted to Freundlich’s isotherm model and the pseudo-second-order kinetic model, respectively. Main adsorption mechanisms in this study were attributed to non-covalent, π-electron acceptor–donor interactions and hydrophobic interactions judging from the number of chloride elements in each chlorophenol and its hydrophobic characteristics. We also considered the electrostatic repulsion effect between TeCP and AB, because adsorption performance of TeCP at basic condition was slightly worse than at weak acidic condition. Lastly, AB-Fe3O4 showed high adsorption selectivity of TeCP compared to other persistent organic pollutants (i.e., bisphenol A and sulfamethoxazole) due to hydrophobic interactions. We concluded that AB-Fe3O4 may be used as novel adsorbent for wastewater treatment including toxic and hydrophobic organic pollutants (e.g., TeCP).


2006 ◽  
Vol 54 (10) ◽  
pp. 1-8 ◽  
Author(s):  
S. Deng ◽  
Y.P. Ting ◽  
G. Yu

A novel biosorbent was prepared by chemically grafting of polyethylenimine (PEI) onto the fungal biomass of Penicillium chrysogenum through a two-step reaction. The modified biosorbent is favorable for the removal of anionic Cr(VI) species from aqueous solution due to the protonation of amine groups on the biomass surface. The sorption capacity for Cr(VI) increased by 7.2-fold after surface modification. Sorption kinetics results show that the pseudo-second-order kinetic model described the experimental data well. During the sorption process, X-ray photoelectron spectroscopy (XPS) was used to analyze the chromium species on the biosorbent surface and the results indicate that part of the Cr(VI) ions were reduced to Cr(III) ions which can be chelated with the amine groups on the biomass surface. The reduced Cr(III) ions formed some aggregates on the surface at higher solution pHs.


2021 ◽  
Vol 68 (2) ◽  
pp. 363-373
Author(s):  
Roya Salahshour ◽  
Mehdi Shanbedi ◽  
Hossein Esmaeili

In the present work, methylene blue was eliminated from aqueous solution using activated carbon prepared by lotus leaves. To perform the experiments, batch method was applied. Also, several analyses such as SEM, FTIR, EDAX and BET were done to determine the surface properties of the activated carbon. The results showed that the maximum sorption efficiency of 97.59% was obtained in initial dye concentration of 10 mg/L, pH of 9, adsorbent dosage of 4 g/L, temperature of 25 °C, contact time of 60 min and mixture speed of 400 rpm. Furthermore, the maximum adsorption capacity was determined 80 mg/g, which was a significant value. The experimental data was analyzed using pseudo-first order, pseudo-second order and intra-particle diffusion kinetic models, which the results showed that the pseudo-second order kinetic model could better describe the kinetic behavior of the sorption process. Also, the constant rate of the pseudo-second order kinetic model was obtained in the range of 0.0218–0.0345 g/mg.min. Moreover, the adsorption equilibrium was well described using Freundlich isotherm model. Furthermore, the thermodynamic studies indicated that the sorption process of methylene blue dye using the activated carbon was spontaneous and exothermic.


2020 ◽  
Vol 69 (7) ◽  
pp. 678-693
Author(s):  
R. Aouay ◽  
S. Jebri ◽  
A. Rebelo ◽  
J. M. F. Ferreira ◽  
I. Khattech

Abstract Hydroxyapatite powders were synthesized according to a wet precipitation route and then subjected to heat treatments within the temperature range of 200–800 °C. The prepared samples were tested as sorbents for cadmium in an aqueous medium. The best performances were obtained with the material treated at 200 °C (HAp200), as the relevant sorbent textural features (SBET – specific surface area and Vp – total volume of pores) were least affected at this low calcination temperature. The maximum adsorption capacity at standard ambient temperature and pressure was 216.6 mg g−1, which increased to 240.7 mg g−1 by increasing the temperature from 25 to 40 °C, suggesting an endothermic nature of the adsorption process. Moreover, these data indicated that a thermal treatment at 200 °C enhanced the ability of the material in Cd2+ uptake by more than 100% compared to other similar studies. The adsorption kinetic process was better described by the pseudo-second-order kinetic model. Langmuir, Freundlich, and Dubinin–Kaganer–Radushkevich isotherms were applied to describe the sorption behaviour of Cd2+ ions onto the best adsorbent. Furthermore, a thermodynamic study was also performed to determine ΔH°, ΔS°, and ΔG° of the sorption process of this adsorbent. The adsorption mechanisms were investigated by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy-transmission electron microscopy (SEM-TEM) observations.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1053
Author(s):  
Krzysztof Cendrowski ◽  
Karolina Opała ◽  
Ewa Mijowska

In this contribution, the synthesis of the metal−organic framework (MOF) based on lanthanum that exhibits trigonal prism shape is presented. The length of a single side of this structure ranges from 2 to 10 μm. The carbonized lanthanum-based organic framework (CMOF–La) maintained the original shape. However, the lanthanum oxide was reshaped in the form of rods during the carbonization. It resulted in the creation of parallel arranged channels. The unique structure of the carbonized structure motivated us to reveal its adsorption performance. Therefore, the adsorption kinetics of acid red 18 onto a carbonized metal−organic framework were conducted. Various physicochemical parameters such as initial dye concentration and pH of dye solution were investigated in an adsorption process. The adsorption was found to decrease with an increase in initial dye concentration. In addition, the increase in adsorption capacity was noticed when the solution was changed to basic. Optimal conditions were obtained at a low pH. Kinetic adsorption data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. The adsorption kinetics were well fitted using a pseudo-second-order kinetic model. It was found that the adsorption of anionic dye onto CMOF–La occurs by hydrophobic interactions between carbonized metal-organic framework and acid red 18.


2011 ◽  
Vol 64 (9) ◽  
pp. 1857-1863 ◽  
Author(s):  
A. N. Módenes ◽  
F. R. Espinoza-Quiñones ◽  
C. E. Borba ◽  
D. E. G. Trigueros ◽  
F. L. Lavarda ◽  
...  

In this work, the displacement effects on the sorption capacities of zinc and cadmium ions of the Eichornia crassipes-type biosorbent in batch binary system has been studied. Preliminary single metal sorption experiments were carried out. An improvement on the Zn(II) and Cd(II) ions removal was achieved by working at 30 °C temperature and with non-uniform biosorbent grain sizes. A 60 min equilibrium time was achieved for both Zn(II) and Cd(II) ions. Furthermore, it was found that the overall kinetic data were best described by the pseudo second-order kinetic model. Classical multi-component adsorption isotherms have been tested as well as a modified extended Langmuir isotherm model, showing good agreement with the equilibrium binary data. Around 0.65 mequiv./g maximum metal uptake associated with the E. crassipes biosorbent was attained and the E. crassipes biosorbent has shown higher adsorption affinity for the zinc ions than for the cadmium ones in the binary system.


2021 ◽  
Author(s):  
R MAHALAKSHMI ◽  
SARAVANAN R ◽  
P SELVAKUMAR ◽  
M S KARTHIKEYAN ◽  
L RAVIKUMAR

Abstract The adsorption of metal ions from wastewater using Schiff base cellulose bearing pendulant heterocyclic chelating groups (MC-Tz) as a sorbent is the subject of this paper. Solid state 13 C-NMR, FT-IR, SEM, and XRD spectroscopy, as well as TGA and XRD were utilized to examine the adsorbent. The batch sorption process used pH, adsorbent dose, initial adsorbate concentration, temperature, as well as contact time to calculate the metal ion levels. The optimum pH-6.0, with the complexation reaction and ion exchange phase as the mechanisms at work. To investigate the equilibrium concentration and temperature-dependent rate constants, various models, such as the Langmuir, Freundlich, Temkin, and Redlich-Peterson adsorption isotherm were utilized. A Kinetic study shows that the Langmuir is more in agreement with the Pseudo-second order Kinetic model. Adsorption-Desorption experiments over four cycles demonstrated the feasibility of the sorbent's regeneration potential and the measured values of enthalpy and entropy explain the essence of the adsorption process. The objective of this research is to discover non-toxic, environmentally friendly adsorbent biodegradable components and to conduct evaluations to determine their use in wastewater treatment.


2012 ◽  
Vol 512-515 ◽  
pp. 2355-2360 ◽  
Author(s):  
Hong Huang ◽  
Yan Li Zou ◽  
Ya Nan Li

The sorption performance of tetracycline on zeolite under different conditions was investigated in presence and absence of Cu(Ⅱ).The presence of Cu(Ⅱ) greatly increased the adsorption of tetracycline on zeolite. Adsorption kinetics and adsorption equilibrium isotherms were studied by conducting series of batch experiments. The kinetic analysis indicated that the pseudo-second-order kinetic model was well described the sorption equilibrium process of tetracycline onto zeolite in the presence and absence of Cu(Ⅱ), and intra-particle diffusion was not the only rate-limiting in the sorption process. The qmax value calculated from Langmuir model were 17.37 and 68.26 mg/g in the absence and the presence of Cu(Ⅱ). The value of E calculated from Dubinin-Radushkevich (D-R) model confirmed that the adsorption in the absence and presence of Cu(Ⅱ) were mainly controlled by physical combined with chemical adsorption mechanism. The tetracycline sorption amount decreased in the absence of Cu(Ⅱ) and increased in the presence of Cu(Ⅱ) as the pH increasing. The adsorption removal rate of wastewater containing 0.1 mmol/L tetracycline was 95.5% in the presence of Cu(Ⅱ) and 34.5% in the absence of Cu(Ⅱ) when the dosage of zeolite was 0.05g.


2021 ◽  
Vol 109 (2) ◽  
pp. 85-97
Author(s):  
Abeer E. Kasem ◽  
Ezzat A. Abdel-Galil ◽  
Nabil Belacy ◽  
Nagwa A. Badawy

Abstract The sorption kinetics and equilibrium isotherms of zirconium, uranium, and molybdenum ions onto synthetic polyaniline/SiO2 composite (PAn/SiO2) have been studied using batch-sorption techniques. This study was carried out to examine the sorption behavior of the PAn/SiO2 for the removal of Zr(IV), U(VI), and Mo(VI) ions from an aqueous solution. The influence of some parameters on the sorption process was also studied. The maximum sorption for Zr(IV), U(VI), and Mo(VI) ions was achieved at 60 min shaking time. Langmuir isotherm model is the most representative for discussing the sorption process with a maximum sorption capacity of 24.26, 21.82, and 13.01 mg/g for Zr(IV), U(VI), and Mo(VI) ions, respectively. Kinetic modeling revealed that the sorption of all ions follows the pseudo-second-order kinetic model. The results demonstrated that both the external and intra-particular diffusion are taken into account in determining the sorption rate. Thermodynamic parameters like ΔG°, ΔH°, and ΔS° for the sorption process were evaluated. The synthetic composite has been successfully applied for the removal and recovery of U(VI) ions from real solution (monazite leachate) using a chromatographic column packed with PAn/SiO2 composite with a breakthrough capacity equal to 239.70 mg/g.


Sign in / Sign up

Export Citation Format

Share Document