scholarly journals Hydrothermal synthesis of tetragonal barium titanate nanopowders under moderate conditions

2021 ◽  
Vol 15 (2) ◽  
pp. 179-183
Author(s):  
Huaxing Meng ◽  
Zhiwu Chen ◽  
Zhenya Lu ◽  
Xin Wang ◽  
Xiaoyi Fu

Monodispersed tetragonal barium titanate (BaTiO3) nanopowders were synthesized by a convenient hydrothermal route at a low temperature of 200?C in only 24 h. The key point of this method is to promote the generation of ultrafine titanium hydroxide precipitation precursors with the help of absolute ethyl alcohol and ammonia solution during the hydrolysis of Ti(OC4H9)4. The results of X-ray diffraction and Raman spectra show that the as-prepared BaTiO3 nanopowders possess tetragonal-dominant structure. The synthesized tetragonal BaTiO3 nanopowders exhibit relatively uniform size and good dispersity, with the average particle size of 96.1 nm and a tetragonality of 1.0073, which enable broad application prospects in the field of multilayer ceramic capacitors.

2002 ◽  
Vol 17 (4) ◽  
pp. 723-726 ◽  
Author(s):  
Donglin Lia ◽  
Zhihong Wang ◽  
Liangying Zhang ◽  
Xi Yao ◽  
Haoshen Zhou

Nanocrystalline KTiOPO4 powders were prepared through a chemical process. This process involved the hydrolysis of KOOCCH3 · 2H2O, Ti(OC4H9)4, and PO(OR)3 to produce a homogeneous solution. A gel was formed by the partial evaporation of this solution. After the gel was decomposed at 450 °C, white amorphous powder remained. On calcinating up to 550 °C, the amorphous powder began to transform into nanocrystalline KTiOPO4 powders with an average particle size of 30–50 nm. The KTiOPO4 powders were investigated through x-ray diffraction, infrared spectroscopy, and transmission electron microscopy studies.


2011 ◽  
Vol 306-307 ◽  
pp. 1369-1374
Author(s):  
Zhi Fang Tong ◽  
Yinq Jie Li ◽  
Li Xiu Lian

The synthesis of complexional ultrafine zinc oxide powders by controlled-release precipitation method, which is a precipitation process of precursor by controlling ammonia distillation rate in ammonia solution under the combination effect of microwave heating and ultrasonic cavitating, and followed by subsequent heat treatment was investigated. The characteristic of precursor and zinc oxide powders were studied using X-ray diffraction, scanning electron microscopy, TG-DTA-DTG, FT-IR, and ultraviolet-visible pectrophotometer. The coloring mechanism of complexional zinc oxide is discussed. This has shown that a tentative composition of the precursor is likely Zn3CO3(OH)4·H2O. Complexional zinc oxide particles of an average particle size of 200 nm with narrow size distribution, good dispersibility and hexagonal appearance could be obtained after annealing at 350°C for 1.5 hour. ZnO particles are complexional, probably due to nitrogen atom or N-H bond entering into crystal lattice of zinc oxide. Complexional zinc oxide has fine capacity of shielding UV and absorbing wide range of wavelength.


2011 ◽  
Vol 236-238 ◽  
pp. 1814-1817
Author(s):  
Hong Wang ◽  
Yan Jie ◽  
Hong Luo ◽  
Xue Feng

Monodisperse α-Fe2O3nanoparticles with average particle size of 110 nm were successfully prepared using olyvinylpyrrolidone (PVP) as surfactant via a novel hydrothermal route. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM). The experiments results revealed that PVP and the concentration of NH4HCO3have played a crucial role in the formation of the monodisperse a-Fe2O3nanoparticles.


2021 ◽  
Vol 21 (3) ◽  
pp. 1636-1640
Author(s):  
Xiao-Qi Li ◽  
Zhi Li ◽  
Tong-Tong Shi

Fe4N nanopowders were prepared using specially-made high-pressure gas-solid reaction equipment, and their composition, morphology, and magnetic properties were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). An average particle size of 35 nm was obtained at 0.4 MPa, an ammonia-to-hydrogen ratio of 3:1, 623 K, in an ammonia solution for 2 h. The hysteresis loop displayed a thin and narrow shape at 673 K during VSM tests. The saturation magnetization (Ms) reached 169.80 emu/g.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. A. Athmaselvi ◽  
C. Kumar ◽  
M. Balasubramanian ◽  
Ishita Roy

This study evaluates the physical properties of freeze dried tropical (guava, sapota, and papaya) fruit powders. Thermal stability and weight loss were evaluated using TGA-DSC and IR, which showed pectin as the main solid constituent. LCR meter measured electrical conductivity, dielectric constant, and dielectric loss factor. Functional groups assessed by FTIR showed presence of chlorides, and O–H and N–H bonds in guava, chloride and C–H bond in papaya, and chlorides, and C=O and C–H bonds in sapota. Particle size and type of starch were evaluated by X-ray diffraction and microstructure through scanning electronic microscopy. A semicrystalline profile and average particle size of the fruit powders were evidenced by X-ray diffraction and lamellar/spherical morphologies by SEM. Presence of A-type starch was observed in all three fruits. Dependence of electric and dielectric properties on frequency and temperature was observed.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
K. R. Nemade ◽  
S. A. Waghuley

Solvent mixed spray pyrolysis technique has attracted a global interest in the synthesis of nanomaterials since reactions can be run in liquid state without further heating. Magnesium oxide (MgO) is a category of the practical semiconductor metal oxides, which is extensively used as catalyst and optical material. In the present study, MgO nanoparticles were successfully synthesized using a solvent mixed spray pyrolysis. The X-ray diffraction pattern confirmed the formation of MgO phase with an excellent crystalline structure. Debye-Scherrer equation is used for the determination of particle size, which was found to be 9.2 nm. Tunneling electron microscope analysis indicated that the as-synthesized particles are nanoparticles with an average particle size of 9 nm. Meanwhile, the ultraviolet-visible spectroscopy of the resulting product was evaluated to study its optical property via measurement of the band gap energy value.


Author(s):  
Nayana S. Baste ◽  
Ganesh. D. Basarkar

Natural polymers are the most accepted pharmaceutical excipients of formulator’s choice. The reasons for this are their cost effectiveness, biocompatibility and availability. In this research article natural gum was extracted from the seeds of Samanea saman by using ethanol as a solvent. The physicochemical characterization like Loss on drying, Total ash and Acid insoluble ash, Swelling Index, Viscosity and qualitative evaluation of purified gum was done. The percent yield of gum was found to 6% w/w and the swelling index was found to be 18.5. Total ash value (7.5% w/w) and Acid insoluble ash value (1.4%w/w) shows purity of gum whereas 3.2% w/w loss on drying suggest low moisture content of gum. Chemical evaluation shows presence of carbohydrate. X ray diffraction graph of gum shows crystalline nature. The gum has average particle size 45.0±0.32 to 50±0.18μm, and the surface texture of the particles was found to be rough and irregular by scanning Electron Microscopy. Mucoadhesive property of gum was evaluated by Swelling index, Mucoadhesive force, Shear stress measurement. For this study polymeric tablet of gum with concentrations like 10%, 30%, 50%, 70% and 90 %w/w were formulated and the results shows best mucoadhesive and swelling property. From the above result the gum may be used in the formulation of mucoadhesive dosage form.


2010 ◽  
Vol 177 ◽  
pp. 673-676 ◽  
Author(s):  
Jun Xue ◽  
Hou Kui Xiang ◽  
Hong Qiao Ding ◽  
Shu Li Pang ◽  
Xue Hua Wang ◽  
...  

Carbon encapsulated Fe-Cu alloys nanoparticles were synthesized by using ferric nitrate, copper nitrate as metal sources and using sucrose as carbon source. The synthesis process involved a step of hydrazine hydrate reduction in alcohol solution and a step of annealing carbonization. The as-prepared samples were characterized by X-ray diffraction technique, X-ray energy dispersion spectrograph, trans- mission electron microscopy and Raman spectroscopy. The results showed the sample was core / shell structure, the metalic core was crystalline FeCu4 alloy, the shell was amorphous carbon, and the average particle size was about 51nm. The magnetic measurement by using a vibrating sample magnetometer revealed that the sample has ultra-soft magnetic property with the saturation magnetization Ms of 13.01 emu/g, residual magnetization Mr of 0.37 emu/g and coercive forces Hc of 54.43 Oe at room temperature.


2018 ◽  
Vol 762 ◽  
pp. 408-412
Author(s):  
Raivis Eglītis ◽  
Gundars Mežinskis

In this work two different hydrosols were used to impregnate a commercially available cotton fabric with anatase nanoparticles to give it photocatalytic activity. To increase the activity, different pre-treatment methods were applied. The nanoparticle size was determined using dynamic light scattering and x-ray diffraction and the fabrics were examined using scanning electron microscopy. Photocatalytic activity was measured using the degradation of methyl-orange while irradiating the samples with UV light. The synthesis method allowed to produce anatase with an average particle size of 32 to 37 nm depending on the synthesis method used.


2021 ◽  
Vol 17 (9) ◽  
pp. 1824-1829
Author(s):  
Junlin Li ◽  
Xiangfei Li ◽  
Dong Liang ◽  
Xiaojuan Zhang ◽  
Qing Lin ◽  
...  

This study exploits the potential of zinc oxide nanoparticles (ZnO-NPs) with diverse morphologies as catalysts and antibacterial agent. Spherical ZnO-NPs, rod-shaped ZnO-NPs and flower-shaped ZnO-NPs were prepared by microemulsion method, solvent heat method and hydrothermal method, respectively. The structural characterizations of samples were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. XRD results revealed the formation of spherical ZnO-NPs, rod-shaped ZnO-NPs and flower-shaped ZnO-NPs were all wurtzite crystal structure. SEM results showed that spherical ZnO-NPs had an average particle size of 30–40 nm, rod-shaped ZnO-NPs were about 500 nm long and 100 nm wide with obvious hexagonal crystals. Flower-shaped ZnO-NPs had a three-dimensional appearance with obvious petals. Results of electrochemical HER (Hydrogen evolution reaction) experiments revealed that spherical ZnO-NPs exhibited the highest electrocatalytic activity at the lowest potential voltage due to their largest specific surface area. The antibacterial property of ZnO-NPs samples were studied by the optical density method and disc diffusion method. All samples had antibacterial effects against E. coli. and flower-shaped ZnO-NPs showed the best antibacterial activity due to the largest surface area in comparison with spherical ZnO-NPs and rod-shaped ZnO-NPs, which promised the maximum Zn2+ release as bactericide mechanism that registered in the case of different ZnO-NPs morphologies.


Sign in / Sign up

Export Citation Format

Share Document