scholarly journals Effects of developed thyme and oregano essential oil formulations on Monilinia laxa and Monilinia fructicola

2020 ◽  
Vol 35 (1) ◽  
pp. 49-56
Author(s):  
Brankica Tanovic ◽  
Jovana Hrustic ◽  
Milica Mihajlovic ◽  
Mila Grahovac ◽  
Marija Stevanovic ◽  
...  

Essential oils have been well-known for their antimicrobial properties for a very long time. Some of them have been effectively used in human medicine for decades. Our earlier investigation revealed a great potential of thyme and oregano essential oils as crop protectants against some postharvest fruit pathogens. The effects of formulated thyme and oregano essential oils on Monilinia laxa and Monilinia fructicola were studied in vitro and in vivo. In vitro antagonistic assays were performed on solidified PDA medium using a slightly modified agar overlay technique, while in vivo experiments were conducted on inoculated apple fruits. In vitro essays showed that the developed formulations (emulsifiable concentrates - EC) significantly inhibited the mycelial growth of Monilinia spp. Experiments in vivo, performed on inoculated apple fruits, revealed that the developed formulations provided a significant level of Monilinia spp. suppression. To our knowledge, another EC formulation of oregano essential oil intended for use in Monilinia spp. control has never been developed before. The presented results are initial findings and evaluation of the activity of the developed products should therefore proceed under field conditions to determine their efficacy and activity spectrum, and to estimate economic aspects of their use.

2020 ◽  
Vol 19 (1) ◽  
pp. 34-42
Author(s):  
Phanin Sintawarak ◽  
◽  
Suwimon Uthairatsamee ◽  
Tharnrat Keawgrajang ◽  
◽  
...  

Cylindrocladium reteaudii (Bugnic.) Boesew. is a severe pathogen which can cause leaf blight disease in Eucalyptus seedlings in tropical countries. This study investigated the antifungal activity of essential oils extracted from Acorus calamus L. rhizomes in inhibiting the growth of C. reteaudii, both in in vitro and in vivo experiments. The extraction of essential oils from rhizomes was carried out by hydro-distillation technique and the in vitro antifungal testing was done by using the poisoned food technique. The results indicated that an essential oil concentration of 2,000 ppm can completely inhibit the fungal growth with a 50% inhibitory concentration value of 54.76 ppm. For the in vivo experiment, it was found that an essential oil concentration of 500 ppm and Captan® of 1,000 ppm were not significantly different in inhibiting the growth of C. reteaudii. However, these two treatments significantly inhibited the fungal growth (p<0.05) when compared with the control treatments. Physiological and anatomical characteristics were investigated to check for the antifungal activity after the application of essential oils. Results showed that essential oil spraying had no effect on the leaf transpiration rate and temperature of the Eucalyptus seedlings, but the incident disease ratio was high when an essential oil concentration of more than 1,500 ppm was applied. Therefore, it can be inferred that the essential oils from A. calamus rhizomes at an optimum concentration can be an efficient antifungal compound with a potential to control leaf and shoot blight diseases in Eucalyptus seedlings in a nursery.


Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79 ◽  
Author(s):  
María Ibáñez ◽  
María Blázquez

The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four compounds accounting for between 97.67–99.66% of the total essential oils were identified by Gas Chromatography-Mass Spectrometry analysis. Winter savory with carvacrol (43.34%) and thymol (23.20%) as the main compounds produced a total inhibitory effect against the seed germination of tested weed. Menthol (48.23%), menthone (23.33%), and iso-menthone (16.33%) from peppermint only showed total seed germination inhibition on L. multiflorum, whereas no significant effects were observed with trans-anethole (99.46%) from anise at all concentrations (0.125–1 µL/mL). Low doses of peppermint essential oil could be used as a sustainable alternative to synthetic agrochemicals to control L. multiflorum. The results corroborate that in vivo assays with a commercial emulsifiable concentrate need higher doses of the essential oils to reproduce previous in vitro trials. The higher in vivo phytotoxicity of winter savory essential oil constitutes an eco-friendly and less pernicious alternative to weed control. It is possible to achieve a greater in vivo phytotoxicity if less active essential oil like peppermint is included with other active excipients.


2021 ◽  
Vol 6 (2) ◽  
pp. 028-049
Author(s):  
Éva Szőke ◽  
Éva Lemberkovics

The importance of chamomile (Chamomilla recutita) inflorescence is widely known in classical and folk medicine, with the largest group of its effective constituents forming the essential oil (chamazulene, a-bisabolol, α-farnesene, trans-β-farnesene, spathulenol, cis/trans-en-in-dicycloethers). Among cultivated species, the Hungarian BK-2 contains more chamazulene in its essential oil than the German Degumil type, which is mainly cultivated for its a-bisabolol. Both components have important antiinflammatory activities. Wild populations can be easily distinguished from cultivated ones by their high amount of bisaboloides, particularly the flower of Hungarian Szabadkígyós wild type, which contained on average 48 % of the biologically active (-)-a-bisabolol. The population of Szabadkígyós has good salt tolerance which is important owing to global warming, because the proportion of saline areas is increasing worldwide. To keep the genome of Szabadkígyós having high (-)-a-bisabolol content, Szőke and research team used biotechnological methods. Sterile plantlets, were infected by Agrobacterium rhizogenes strains #A-4, #15834, #R-1601. The hairy root clones possessing the best growing and biosynthetical potential were multiplied for phytochemical investigations. Pharmacologically important compounds of their essential oils were followed in great detail. The amount of in vitro cultured terpenoids and polyin compounds was compared with that of in vivo plants. GC-MS studies showed that sterile chamomile cultures generated the most important terpenoid and polyin compounds characteristics of the mother plant. Berkheyaradulene, geranyl-isovalerat and cedrol as new components were identified in these sterile cultures. The main component of hairy root cultures (D/400, D/1, D/100 and Sz/400) was tr-b-farnesene and in addition one new compound: a-selinene was identified. Hairy root culture originated from chamomile collected in Szabadkígyós was intensive increased the essential oil content and pharmacological active compounds: (-) -α-bisabolol and β-eudesmol was also synthetized in large quantity. Furthermore, in vitro organized cultures were made from this population to obtain propagation material containing numerous active substances.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1831 ◽  
Author(s):  
Renata M. Sumalan ◽  
Raufdzhon Kuganov ◽  
Diana Obistioiu ◽  
Iuliana Popescu ◽  
Isidora Radulov ◽  
...  

There is an increasing interest in developing natural methods to replace the current chemicals used for maintaining postharvest quality of citrus fruits. The essential oil antifungal activity of mint (MEO), basil (BEO), and lavender (LEO) acting as the vapor-phases was tested against Penicillium digitatum. The minimum doses with fungistatic and fungicidal effect, in vitro, acting as the vapor-phases, were set up. The minimum fungicidal dose was 300 μL for BEO and 350 μL LEO, while for MEO only minimal dose with fungistatic effect was reached. The IC50 values were calculated and used (v/v) for testing preservation of lemon fruits, in close space enriched in vapor oil. For this purpose, the following two independent in vivo experiments were carried out: experiment 1, inoculated lemons with P. digitatum stored without chemical treatments 7 days, at 22 ± 2 °C, at two concentrations (C1—IC50 equivalent; C2—half of C1); and experiment 2, the non-inoculated lemons kept under the same conditions and concentrations of EO vapor served to evaluate the lemon quality properties. The results showed that antifungal protective effect was provided in the order of LEO-C1 > BEO-C1 > MEO-C1 > BEO-C2 > MEO-C2 > LEO-C2. The quality indicators like weight loss, pH, and firmness were not negatively influenced.


2020 ◽  
pp. 1379-1384
Author(s):  
Alex Rodrigues Silva Caetano ◽  
Sara Maria Chalfoun ◽  
Mario Lúcio Vilela Resende ◽  
Caroline Lima Angélico ◽  
Wilder Douglas Santiago ◽  
...  

Essential oils, also known as volatile oils, are substances produced through the secondary metabolism of plants. In this study, we determined the chemical composition and the in vitro and in vivo antifungal activity of the essential oils from four species of Eucalyptus, Eucalyptus citriodora, Eucalyptus camaldulensis, Eucalyptus grandis and Eucalyptus microcorys, against the Hemileia vastatrix fungus. The essential oils from these four species of Eucalyptus were extracted from their leaves by the hydrodistillation technique using a modified Clevenger apparatus. The chemical characterization was performed by gas chromatography coupled with a mass spectrometer detector and by gas chromatography using a flame ionization detector. The antifungal activities of the essential oils against H. vastatrix were studied by evaluating the percentage of spore germination using the microdilution test for in vitro assays. The curative and preventive effects were evaluated in in vivo tests. The principal constituents of the essential oil from E. citriodora were citronellal, citronellol and isopulegol, while E. camaldulensis produced 1,8-cineole, α-terpineol and α-pinene. 1,8-cineole, α-pinene and α-terpineol were obtained from E. grandis and 1,8-cineole, α-pinene and trans-pinocarveol were the principal components in the essential oil of E. microcorys. In vitro and in vivo antifungal activities against the fungus under study were observed for most of the essential oils, except the essential oil from E. microcorys, for which no preventive antifungal activity was observed. Only the curing of infection by the H. vastatrix fungus was observed with this oil.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 494 ◽  
Author(s):  
Reginaldo dos Santos Pedroso ◽  
Brenda Lorena Balbino ◽  
Géssica Andrade ◽  
Maria Cecilia Pereira Sacardo Dias ◽  
Tavane Aparecida Alvarenga ◽  
...  

Candidiasis therapy, especially for candidiasis caused by Candida non-albicans species, is limited by the relatively reduced number of antifungal drugs and the emergence of antifungal tolerance. This study evaluates the anticandidal activity of 41 plant-derived products against Candida species, in both planktonic and biofilm cells. This study also evaluates the toxicity and the therapeutic action of the most active compounds by using the Caenorhabditis elegans–Candida model. The planktonic cells were cultured with various concentrations of the tested agents. The Cupressus sempervirens, Citrus limon, and Litsea cubeba essential oils as well as gallic acid were the most active anticandidal compounds. Candida cell re-growth after treatment with these agents for 48 h demonstrated that the L. cubeba essential oil and gallic acid displayed fungistatic activity, whereas the C. limon and C. sempervirens essential oils exhibited fungicidal activity. The C. sempervirens essential oil was not toxic and increased the survival of C. elegans worms infected with C. glabrata or C. orthopsilosis. All the plant-derived products assayed at 250 µg/mL affected C. krusei biofilms. The tested plant-derived products proved to be potential therapeutic agents against Candida, especially Candida non-albicans species, and should be considered when developing new anticandidal agents.


2020 ◽  
Vol 23 (3) ◽  
pp. 196-204 ◽  
Author(s):  
Hanane Senouci ◽  
Nassira G. Benyelles ◽  
Mohammed E.A. Dib ◽  
Jean Costa ◽  
Alain Muselli

Background: Tomato is considered a model plant in genetics and is one of the most economically important crops of all those that exist in the world. Several species of fungi are reported on tomato fruit, causing damage both during cultivation and after harvest. Some of the appropriate actions that could be initiated to resolve the problem are to develop and search for new antimicrobial substances isolated from the bioactive natural products, such as essential oils. Aim and Objective: The aim of this work was to determine the chemical composition of essential oils of Ammoides verticillata, Allium sativum and Curcuma longa, to evaluate their in-vitro antifungal activities and in-vivo antifungal effect of essential oils to prevent the diseases caused by tomato. Materials and Methods: The essential oils obtained from aerial parts of plants were analyzed by GC/MS and tested for their antifungal activities against Penicillium expansum, Fusarium solani, Rhizopus stolonifer and Alternaria alternata using the radial growth technique method. The effectiveness in-vivo of the association between Allium sativum and Curcuma longa essential oils was also investigated on tomatoes inoculated by fungi. Results: The essential oil from A. verticilata was mainly composed of phenolic compounds (54.4%), the A. sativum oil was mainly composed of sulfur compounds (91.5%) and C. longa oil was dominated by oxygenated monoterpenes (82.0%). The obtained results in-vitro antifungal revealed that individual essential oils of A. verticillata and A. sativum were more active than the essential oil of C. longa against all screened microorganisms. An important antifungal effect of A. sativum and C. longa essential oils blend was obtained against P. expansum (100%), F. solani (95.2%), R. stolonifer (95.1%) and A. alternata (48.5%). Furthermore, A. sativum and C. longa essential oils blends have demonstrated promising in-vivo antifungal activity to control infection of tomato against P. expansum and R. stolonifer. Conclusion: A. sativum and C. longa essential oil blends can be used as a natural food preservative and alternative to chemical fungicides to protect stored tomato against many phytopathogens.


2017 ◽  
Vol 47 (5) ◽  
Author(s):  
Tamara Leite dos Santos ◽  
Leônidas Leoni Belan ◽  
Diego Cunha Zied ◽  
Eustáquio Souza Dias ◽  
Eduardo Alves

ABSTRACT: Lecanicillium fungicola, which causes Dry bubble disease, induces infections and inflicts major losses in champignon production. The control can be managed through measures of hygiene and use of fungicides; however, in Brazil there are no registered products. This study aimed to estimate the influence of various essential oils extracted from Melissa officinalis, Thymus vulgaris, Origanum vulgare, Eucalyptus globulus, Cinnamomum zeylanicum and Syzygium aromaticum on the in vitro development and their uses. Therefore, analysis was performed of the L. fungicola isolates in vitro and the best oils were tested in vivo. Besides, the Agaricus bisporus - L. fungicola interaction was confirmed by scanning electron microscopy (SEM). Cinnamon and clove oils in concentrations of 0.4% and thyme oil of 0.8% were identified as good growth inhibitors of the pathogenic mycelium. Effective inhibition of the conidial germination was seen in all concentrations by cinnamon oil, and by clove and thyme oils only at 0.4% and 0.8%, respectively. When the essential oils were applied post-infestation in the in vivo experiments the incidence of the disease in the mushrooms was much lower. From the SEM it was clear that 19 hours after the inoculation of A. bisporus with L. fungicola, the spores had already completely germinated, revealing the presence of the infection. Therefore, the findings of this study indicated that the oil extracts of cinnamon, clove and thyme are potential and efficient alternatives in the control of dry bubble disease.


Author(s):  
Azime Küçükgül

The presence of different phytochemical components of essential oil such as tannins, alkaloids, terpenoids and phenolic compounds has antibacterial, antifungal, and anti-inflammatory effects. The aim of this study is to investigate importance of the major components of three herb essential oils (Thymus vulgaris L., Centauriumerythraea Rafn. And Foeniculumvulgare Mill) on challenging with fish diseases. The components of essential oils provided from a commercial firm were made GC/MS analyzes. The major component of T. vulgarewas carvacrol called as phenol, 2-methyl-5-(1-methylethyl) with 40%.The others were Linalool L (15.11%) and benzene, methyl(1-methylethyl)- (12.12%).The richest oil in C. erythraea was bicyclo[3.1.1]hept-2-ene, 2,6,6-trimethyl- (34.90%) called as alpha-pinene, followed by heptacosane (19.15%) and dotriacontane (17.72%), respectively.The evaluation of the essential oil of F. vulgarispresented benzene, 1-methoxy-4-(1-propenyl)- with 67.99%, followed by dl-Limonene (16.03%) and benzene, 1-methoxy-4-(2-propenyl)- (6.97%). The therapeutic effects of thyme are due to its high content of phenolic compounds, particularly carvacrol. The most important compounds of F. vulgare essential oil is anethole, fenchone, limonene that has antibacterial, antioxidant, antifungal and anticancer effects. The previous studies show that alpha pinene significantly inhibits many pathogenic Gram-negative bacteria. In aquaculture studies, in vitro and in vivo effects of the dominant compounds of essential oils in our study are consistent with the previous findings.


2019 ◽  
pp. 96-104
Author(s):  
N. Hrynchuk ◽  
N. Vrynchanu

The emergence and spread of antibiotic-resistant strains of microorganisms reduces the effectiveness of antibiotic therapy and requires finding solutions to problems, one of which is the study of antimicrobial properties in drugs of various pharmacological groups. The purpose of the work was to summarize the data on the antibacterial activity of thioridazine and its derivatives to determine the feasibility and prospects of creating new antibacterial drugs on their basis. The paper presents literature data on the effects of thioridazine on the causative agent of tuberculosis, antistaphylococcal activity, susceptibility of plasmodium and trypanosoma. The antibacterial activity of the drug was established within in vitro studies with the determination of MIC towards gram-positive and gram-negative microorganisms, ex vivo using macrophage lines, as well as within in vivo experiments on mice. It is established that the neuroleptic thioridazine is characterized by pronounced anti-tuberculosis activity, the mechanism of action is associated with the impact on the cell membrane of M. tuberculosis, inactivation by calmodulin and inhibition of specific NADH-dehydrogenase type II. The literature data indicate that thioridazine is able to increase the activity of isoniazid against the strains of mycobacteria that are susceptible and resistant to its action. It has been established that resistance to thioridazine in antibiotic-resistant M. tuberculosis strains is not formed. The drug is characterized by its ability to inhibit the growth and reproduction of both methicylin-sensitive (MSSA) and methicilin-resistant (MRSA) strains of Staphylococcus aureus, which has been proven within in vitro experiments. The effectiveness of thioridazine has been proven within in vivo experiments in case of skin infection and sepsis caused by S. aureus. Antimicrobial effect of the drug is also observed towards to plasmodium (P. falciparum) and trypanosomes (Trypanosoma spp.). Currently, the synthesis of thioridazine derivatives is carried out to identify compounds with a pronounced antibacterial effect. Some of the first synthesized compounds are not inferior or superior to thioridazine by the inhibitory effect. Thus, these data suggest that drugs of different pharmacological groups, including drugs that affect the nervous system - thioridazine and its derivatives, can be a source of replenishment of the arsenal of antimicrobial drugs to control such threatening infections as tuberculosis and diseases caused by polyresistant strains of microorganisms.


Sign in / Sign up

Export Citation Format

Share Document