scholarly journals Effects of steam addition and/or injection on the combustion characteristics: A review

2019 ◽  
pp. 452-452
Author(s):  
Ashkan Sehat ◽  
Fathollah Ommi ◽  
Zoheir Saboohi

Due to increasing global energy demand and the fact that a major source of the required energy is generated from fossil fuels, the combustion process has turned into a topic of interest in converting fossil fuels to energy. An ideal combustion system is one that can combine high engine efficiency with low fuel consumption and low emissions. Increasing humidity is a technique used by researchers for influencing the combustion process. The present study aims to review previously conducted researches in this regard. Based on viewpoints of these researches, the reviewed studies were categorized into four groups: (1) the case studies used; (2) the methodology applied; (3) the design guidelines considered; and (4) the performance parameters studied. It can be concluded from the reviewed articles that nitrogen oxide (NOx) reduction is the most significant advantage of increasing humidity in the combustion process, and has led to the widespread use of this method. The other studied emissions either remained constant or their respective increases were negligible.

2020 ◽  
Vol 207 ◽  
pp. 01025
Author(s):  
Jaroslaw Markowski ◽  
Pawel Imilkowski ◽  
Marcin Nowacki ◽  
Damian Olejniczak ◽  
Jacek Madry ◽  
...  

The issue of measuring and determining the calorific value of fuels is related to thermodynamic analysis of the effects of the combustion process aimed at determining the amount of heat transferred to the environment. Currently, there are several methods for determining the calorific value of fuels and their methodology is related to the type of fuel being analyzed. These methods are quite complicated and require the use of specialized measuring equipment. The energy demand of modern civilization along with the need to protect the natural environment prompts the search for new ways to generate energy directed at sources other than conventional fossil fuels. Technologies related to the use of biogas, synthesis gas obtained in biomass or waste gasification processes are being introduced. The use of these fuels in industrial processes of generating heat and electricity requires caloric stability of the fuel. The caloric stability of the fuel is necessary to ensure the stability of thermal energy conversion processes that translate directly into the set values of generated electricity using electric machines. One way to assess the energy quality of a fuel is to measure its calorific value. There are several methods for determining the calorific value of a fuel, but they all require special measurement conditions. The article presents the author’s concept of a calorimeter dedicated to the analysis of the calorific value of gaseous fuels.


2021 ◽  
Vol 302 ◽  
pp. 01010
Author(s):  
Dararat Laohalertdecha ◽  
Kampanart Theinnoi ◽  
Sak Sittichompoo

Nowadays, global warming is the main environmental problems all over the world. The air pollutants mainly from the burning of fossil fuels and coal in power plants, transportation, and automobiles. There are release major point emission of the atmosphere. The nitrogen oxides are the most relevant for air pollution that contribute to the formation of photochemical smog and acid rain. Numerous methods have been studied to eliminate the nitrogen oxides such as the use low-nitrogen fuels technology, the selective catalytic reduction (SCR), wet scrubbing. The aim of this research is investigated non-thermal plasma (NTP) techniques offer an innovation to eliminate both nitrogen oxide (NOx) and soot emissions from combustion. This study is used to selectively transfer input electrical energy to electrons without expending this in heating the entire gas flow which creates free radicals in the flue gases. The simulated flue gas from combustion process is applied to the system. The results showed that the prototype of nonthermal plasma system is shown the highly efficient of NOx removal was achieved. However, the optimised of NTP operating conditions are required to enhance the NOx reduction activities.


2020 ◽  
Vol 57 (2) ◽  
pp. 171-185
Author(s):  
Nandakumar Janardhanan ◽  
Kentaro Tamura

Energy transition has been gaining significant policy attention in India, especially in the backdrop of the concerns about growing emissions from fossil fuels and the need for cleaner energy services. However, this has been one of the strategic dilemmas for the country. On the one hand, the increasing demand for fossil fuels is prompting critical policy actions to minimize the energy-related emissions and reduce the dependency on the same. On the other hand, the national economic targets that demand high growth have been pivotal in pushing the energy demand growth and have also been unable to shift away from the conventional energy mix. The global debates on shifting away from environmentally damaging energy sources have always paid greater focus on the coal sector. This is primarily due to the fact that coal-fuelled power generation sector has been responsible for the highest quantity of greenhouse gas emissions in many countries. Shifting away from coal sector can have significant adverse sociopolitical impacts. The workforce depending on the sector for mining and processing, as well as in the other allied sectors can be affected by the falling demand for coal. On the contrary, this article identifies that energy transition has not made any serious dent on the workforce or communities that are traditionally dependent on coal sector. Instead, the fall in employment witnessed is primarily due to the increasing mechanization taking place for the past few decades. The article discusses coal transition in the Indian context to present the arguments in this direction.


2011 ◽  
Vol 32 (4) ◽  
pp. 453-471 ◽  
Author(s):  
Arkadiusz Jamrozik ◽  
Wojciech Tutak

A study of performance and emissions of SI engine with a two-stage combustion systemLean mixture burning leads to a decrease in the temperature of the combustion process and it is one of the methods of limiting nitric oxide emissions. It also increases engine efficiency. An effective method to correct lean mixture combustion can be a two-stage system of stratified mixture combustion in an engine with a prechamber. This article presents the results of laboratory research on an SI engine (spark ignition) with a two-stage combustion system with a cylinder powered by gasoline and a prechamber powered by propane-butane gas LPG (liquefied petroleum gas). The results were compared to the results of research on a conventional engine with a one-stage combustion process. The test engine fuel mixture stratification method, with a two-stage combustion system in the engine with a prechamber, allowed to burn a lean mixture with an average excess air factor equal to 2.0 and thus led to lower emissions of nitrogen oxides in the exhaust of the engine. The test engine with a conventional, single-stage combustion process allowed to properly burn air-fuel mixtures of excess air factors λ not exceeding 1.5. If the value λ > 1.5, the non-repeatability factorCOVLiincreases, and the engine efficiency decreases, which makes it virtually impossible for the engine to operate. The engine with a two-stage combustion process, working with λ = 2.0, theQin/Qtot= 2.5%, reduced the NOxcontent in the exhaust gases to a level of about 1.14 g/kWh. This value is significantly lower than the value obtained in a conventional engine, which worked at λ = 1.3 with comparable non-repeatability of successive cycles (about 3%) and a similar indicated efficiency (about 34%), was characterised by the emissions of NOxin the exhaust equal to 26.26 g/kWh.


The world’s energy demand has increased drastically in the past and is likely to increase even more in the upcoming years. The fossil fuels are non-renewable energy, depleted at fast rate and this fact intensifies the need to look for alternative fuels to meet our day to day energy needs in all power sectors. The consumption rate of energy has increased tremendously and it necessitates increased supply of energy in all forms. The conventional energy resources like diesel, petroleum, gas and coal will soon be depleted. Hence there is a dire requirement to generate alternative sources of the fuel. Biodiesel is one of the best alternative and renewable fuel. It is oxygenate, Sulphur free and biodegradable. Oxygen content in biodiesel helps to improve the efficiency of the engine. Combustion chamber in compression ignition engine is one of the most important roles to enhance the fuel – air mixing rate (swirl) in short possible time. The turbulence is guided by the shape of the combustion chamber. The air swirl is created in combustion chamber, when the fuel air mixing rate increases. Hence the time duration of air fuel mixing rate decreases. The overall duration of the combustion process to shorten as swirl has leads to increases mechanical efficiency. In this work, in which biodiesel is prepared by transesterification process and engine performance is optimized by different parameters such as Piston shape, Load and Blend ratio and analyzed by Analysis of Variance.


2020 ◽  
pp. 149-159
Author(s):  
Jatinder Kataria ◽  
Saroj Kumar Mohapatra ◽  
Amit Pal

The limited fossil reserves, spiraling price and environmental impact due to usage of fossil fuels leads the world wide researchers’ interest in using alternative renewable and environment safe fuels that can meet the energy demand. Biodiesel is an emerging renewable alternative fuel to conventional diesel which can be produced from both edible and non-edible oils, animal fats, algae etc. The society is in dire need of using renewable fuels as an immediate control measure to mitigate the pollution level. In this work an attempt is made to review the requisite and access the capability of the biodiesel in improving the environmental degradation.


2013 ◽  
pp. 109-128 ◽  
Author(s):  
C. Rühl

This paper presents the highlights of the third annual edition of the BP Energy Outlook, which sets out BP’s view of the most likely developments in global energy markets to 2030, based on up-to-date analysis and taking into account developments of the past year. The Outlook’s overall expectation for growth in global energy demand is to be 36% higher in 2030 than in 2011 and almost all the growth coming from emerging economies. It also reflects shifting expectations of the pattern of supply, with unconventional sources — shale gas and tight oil together with heavy oil and biofuels — playing an increasingly important role and, in particular, transforming the energy balance of the US. While the fuel mix is evolving, fossil fuels will continue to be dominant. Oil, gas and coal are expected to converge on market shares of around 26—28% each by 2030, and non-fossil fuels — nuclear, hydro and renewables — on a share of around 6—7% each. By 2030, increasing production and moderating demand will result in the US being 99% self-sufficient in net energy. Meanwhile, with continuing steep economic growth, major emerging economies such as China and India will become increasingly reliant on energy imports. These shifts will have major impacts on trade balances.


Author(s):  
M. A. Danilov ◽  
◽  
M. V. Drobysh ◽  
A. N. Dubovitsky ◽  
F. G. Markov ◽  
...  

Restrictions of emissions for civil aircraft engines, on the one hand, and the need in increasing the engine efficiency, on the other hand, cause difficulties during development of low-emission combustors for such engines.


2017 ◽  
Vol 68 (11) ◽  
pp. 2676-2681
Author(s):  
Mihaela Gabriela Dumitru ◽  
Dragos Tutunea

The purpose of this work was to investigate the physicochemical properties of watermelon seeds and oil and to find out if this oil is suitable and compatible with diesel engines. The results showed that the watermelon seeds had the maximum length (9.08 mm), width (5.71mm), thickness (2.0 mm), arithmetic mean diameter (5.59 mm), geometrical mean diameter (4.69 mm), sphericity (51.6%), surface area (69.07), volume 0.17 cm3 and moisture content 5.4%. The oil was liquid at room temperature, with a density and refractive index of 0.945 and 1.4731 respectively acidity value (1.9 mgNaOH/g), free fatty acid (0.95 mgNaOH), iodine value (120 mgI2/100g), saponification value (180 mgKOH/g), antiradical activity (46%), peroxide value (7.5 mEqO2/Kg), induction period (6.2 h), fatty acid: palmitic acid (13.1%), stearic acid (9.5 %), oleic acid (15.2 %) and linoleic acid (61.3%). Straight non food vegetable oils can offer a solution to fossil fuels by a cleaner burning with minimal adaptation of the engine. A single cylinder air cooled diesel engine Ruggerini RY 50 was used to measure emissions of various blends of watermelon oil (WO) and diesel fuel (WO10D90, WO20D80, WO30D70 and WO75D25). The physic-chemical properties of the oil influence the combustion process and emissions leading to the reduction of NOX and the increase in CO, CO2 and HC.


Author(s):  
Ahmed I. Osman ◽  
Neha Mehta ◽  
Ahmed M. Elgarahy ◽  
Amer Al-Hinai ◽  
Ala’a H. Al-Muhtaseb ◽  
...  

AbstractThe global energy demand is projected to rise by almost 28% by 2040 compared to current levels. Biomass is a promising energy source for producing either solid or liquid fuels. Biofuels are alternatives to fossil fuels to reduce anthropogenic greenhouse gas emissions. Nonetheless, policy decisions for biofuels should be based on evidence that biofuels are produced in a sustainable manner. To this end, life cycle assessment (LCA) provides information on environmental impacts associated with biofuel production chains. Here, we review advances in biomass conversion to biofuels and their environmental impact by life cycle assessment. Processes are gasification, combustion, pyrolysis, enzymatic hydrolysis routes and fermentation. Thermochemical processes are classified into low temperature, below 300 °C, and high temperature, higher than 300 °C, i.e. gasification, combustion and pyrolysis. Pyrolysis is promising because it operates at a relatively lower temperature of up to 500 °C, compared to gasification, which operates at 800–1300 °C. We focus on 1) the drawbacks and advantages of the thermochemical and biochemical conversion routes of biomass into various fuels and the possibility of integrating these routes for better process efficiency; 2) methodological approaches and key findings from 40 LCA studies on biomass to biofuel conversion pathways published from 2019 to 2021; and 3) bibliometric trends and knowledge gaps in biomass conversion into biofuels using thermochemical and biochemical routes. The integration of hydrothermal and biochemical routes is promising for the circular economy.


Sign in / Sign up

Export Citation Format

Share Document