scholarly journals Friction between Archwires of Different Sizes, Cross-Section and Alloy and Brackets Ligated with Low-Friction or Conventional Ligatures

2009 ◽  
Vol 79 (1) ◽  
pp. 111-116 ◽  
Author(s):  
Simona Tecco ◽  
Stefano Tetè ◽  
Felice Festa

Abstract Objective: To test the null hypothesis that no statistically significant difference in frictional resistance is noted when round or rectangular archwires are used in conjunction with low-friction ligatures (small, medium, or large) or conventional ligatures. Materials and Methods: A total of 10 stainless steel brackets, a 0.022-in slot, and various orthodontic archwires, ligated with low-friction ligatures or conventional ligatures, were tested to compare frictional resistance. The archwires employed were 0.014-in and 0.016-in nickel titanium (NiTi), 0.018-in stainless steel (SS), 0.016 × 0.022-in NiTi, 0.016 × 0.022-in SS, 0.017 × 0.025-in titanium molybdenum alloy (TMA), 0.017 × 0.025-in NiTi, 0.017 × 0.025-in SS, 0.019 × 0.025-in SS, and 0.019 × 0.025-in NiTi. Each bracket/archwire combination was tested 10 times in the dry state at an ambient temperature of 34°C. Results: Low-friction ligatures with round archwires showed statistically significantly lower frictional resistance than did conventional ligatures. When coupled with 0.016 × 0.022-in NiTi and SS, no statistically significant difference was observed among the four groups. When coupled with 0.017 × 0.025-in archwires, low-friction ligatures showed statistically significantly greater frictional resistance than was seen with conventional ligatures. When coupled with 0.019 × 0.025-in NiTi, low-friction ligatures showed statistically significantly greater frictional resistance than did conventional ligatures, but no difference among the four groups was observed with the 0.019 × 0.025-in SS. No significant difference was assessed among low-friction ligatures of different sizes. Conclusion: Low-friction ligatures show lower friction when compared with conventional ligatures when coupled with round archwires, but not when coupled with rectangular ones.

2014 ◽  
Vol 4 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Vinit Singh ◽  
Swati Acharya ◽  
Satyabrata Patnaik ◽  
Smruti Bhusan Nanda

Introduction: During sliding mechanics, frictional resistance is an important counterforce to orthodontic tooth movement; whichmust be controlled to allow application of light continuous forces.Objective: To investigate static and kinetic frictional resistance between three orthodontic brackets: ceramic, self-ligating, andstainless steel, and three 0.019×0.025” archwires: stainless steel, nickel-titanium, titanium-molybdenum.Materials & Method: The in vitro study compared the effects of stainless steel, nickel-titanium, and beta-titanium archwires onfrictional forces of three orthodontic bracket systems: ceramic, self-ligating, and stainless steel brackets. All brackets had 0.022”slots, and the wires were 0.019×0.025”. Friction was evaluated in a simulated half-arch fixed appliance on a testing machine. Thestatic and kinetic friction data were analyzed with 1-way analysis of variance (ANOVA) and post-hoc Duncan multiple rangetest.Result: Self-ligating (Damon) brackets generated significantly lower static and kinetic frictional forces than stainless steel (Gemini)and ceramic brackets (Clarity). Among the archwire materials, Beta-titanium showed the maximum amount of frictional forceand stainless steel archwires had the lowest frictional force.Conclusion: The static and kinetic frictional force for stainless steel bracket was lowest in every combination of wire.


2016 ◽  
Vol 6 (1) ◽  
pp. 19-23
Author(s):  
Amol Mhatre ◽  
VK Ravindranath ◽  
Sachin Doshi ◽  
Girish Karandikar ◽  
PS Vivek

ABSTRACT Aim The aim of this in vitro study was to investigate the efficiency of the new generation of elastomeric ligatures with innovative designs (SlideTM and AlastiKTM Easy-to-Tie) in reducing frictional resistance (FR) during sliding mechanics as compared with conventional ligatures. Materials and Methods Sixty ligature samples divided into four groups were used for the study. Group A: QuiK-StiK™ (3M Unitek, Monrovia, CA, USA), Group B: AlastiK™ Easy-to-Tie (3M Unitek, Monrovia, CA, USA), Group C: Slide™ (Leone, Firenze, Italy), and Group D: SS ligatures 0.010” (Libral Traders, New Delhi, India). Universal Testing Machine, Instron was used for measuring FR at the bracket-wire interface. Results There was statistically significant difference in FR among all the four groups of ligatures tested (p < 0.001). Slide ligatures produced the least amount of FR followed by SS ligatures, Easy-to-Tie, and QuiK-StiK in the increasing order of the FR values registered. Conclusion SlideTM ligatures may represent a valid alternative to passive self-ligating brackets when minimal amount of friction is desired. Angulation introduced into the elastomeric ligatures reduces the friction in comparison to conventional elastomeric ligatures. How to cite this article Vivek PS, Ravindranath VK, Karandikar G, Doshi S, Mhatre A, Sonawane M. Frictional Characteristics of the Newer Low-friction Elastomeric Ligatures. J Contemp Dent 2016;6(1):19-23.


2014 ◽  
Vol 1025-1026 ◽  
pp. 330-335 ◽  
Author(s):  
Surachai Dechkunakorn ◽  
Niwat Anuwongnukroh ◽  
Nuntinee Nanthavannich ◽  
Subongkoch Tongkoom

Objectives: The aim of this study was to investigate and to compare the deactivation force, deactivation length and superelasticity in horizontal and vertical directions of Nickel-titanium (NiTi) orthodontic archwires made by 3 different manufactures. Materials and methods: The archwires tested were NiTi-OR (Ormco), NiTi-GH (G&H) and NiTi-H (Highland) and were 0.016 x 0.022 inch2in cross-section and 25 mm in length. The study analysed load-deflection curves from three-point bending tests performed for each type of NiTi wire in vertical (occluso-gingival) direction (0.022” in horizontal dimension) and horizontal (bucco-lingual) direction (0.016” in vertical dimension) at oral temperature (37±10oC). Statistical Analysis: Descriptive analysis and Kruskal Wallis test were performed to assess differences in deactivation force, deactivation length and superelasticity among the three brands. A p<0.05 was considered as significant. Results: The deactivation forces ranked from low to high were NiTi-GH, NiTi-OR and NiTi-H, 2.09, 2.57 and 2.90 N, respectively in horizontal dimension (occluso-gingival direction) and 3.04, 3.54 and 3.62 N in vertical dimension (bucco-lingual direction), respectively. For the deactivation length, ranking from long to short were NiTi-GH, NiTi-OR and NiTi-H, 1.08, 1.02 and 0.63 mm in horizontal dimension and 1.63, 1.46 and 1.13 mm in vertical dimension, respectively. In regards to superelasticity, NiTi-OR showed the highest superelasticity, 15.37 in horizontal and 9.68 in vertical dimension, followed by NiTi-GH, 9.51 for horizontal and 6.40 for vertical dimension and NiTi-H, 4.12 for horizontal dimension and 2.96 for vertical dimension. Conclusion: Deactivation force was higher in vertical than horizontal dimension and deactivation length was longer in vertical than horizontal dimension. However, the superelasticity was higher in horizontal than vertical dimension, except NiTi-H. The high priced NiTi wire (NiTi-OR) had the most superelasticity following by medium (NiTi-GH) and low priced wires (NiTi H).


2016 ◽  
Vol 86 (5) ◽  
pp. 789-795 ◽  
Author(s):  
Roberto Rongo ◽  
Rosa Valletta ◽  
Rosaria Bucci ◽  
Virginia Rivieccio ◽  
Angela Galeotti ◽  
...  

ABSTRACT Objective:  To investigate the cytotoxicity of nickel-titanium (NiTi) esthetic orthodontic archwires with different surface coatings. Materials and Methods:  Three fully coated, tooth-colored NiTi wires (BioCosmetic, Titanol Cosmetic, EverWhite), two ion-implanted wires (TMA Purple, Sentalloy High Aesthetic), five uncoated NiTi wires (BioStarter, BioTorque, Titanol Superelastic, Memory Wire Superelastic, and Sentalloy), one β-titanium wire (TMA), and one stainless steel wire (Stainless Steel) were considered for this study. The wire samples were placed at 37°C in airtight test tubes containing Dulbecco’s Modified Eagle’s Medium (0.1 mg/mL) for 1, 7, 14, and 30 days. The cell viability of human gingival fibroblasts (HGFs) cultured with this medium was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Data were analyzed by a two-way analysis of variance (α  =  .05). Results:  The highest cytotoxic effect was reached on day 30 for all samples. The archwires exhibited a cytotoxicity on HGFs ranging from “none” to “slight,” with the exception of the BioTorque, which resulted in moderate cytotoxicity on day 30. Significant differences were found between esthetic archwires and their uncoated pairs only for BioCosmetic (P  =  .001) and EverWhite (P &lt; .001). Conclusions:  Under the experimental conditions, all of the NiTi esthetic archwires resulted in slight cytotoxicity, as did the respective uncoated wires. For this reason their clinical use may be considered to have similar risks to the uncoated archwires.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Carlos Suárez ◽  
Teresa Vilar ◽  
Pablo Sevilla ◽  
Javier Gil

Objectives. To investigate the in vitro electrochemical corrosive behavior of archwires used in lingual orthodontics and the effects on the phase transition temperatures.Materials and Methods. Six different types of archwires of stainless steel, titanium-molybdenum, nickel-titanium and nickel-titanium-copper were used. Corrosion tests were performed following ISO-standard 10993-15:2000. Differential scanning calorimetry and scanning electron microscopy were used.Results. The stainless steel archwires showed anEpitaround −600 mV, and those of titanium alloys showedEpitvalues around 1000 mV. Differential scanning calorimetry detected a rhombohedral phase in nickel-titanium archwires, while it was not detected in nickel-titanium-copper wires. A difference of 2°C to 3.5°C from the manufacturer's claim was found in the as-received and polarized samples, respectively.Conclusions. The 0.016 stainless steel archwires were found to be the less resistant to corrosion. A rhombohedral phase was detected on the nickel-titanium archwires. No major differences were observed among groups concerning phase transformation temperatures.


2019 ◽  
Vol 9 ◽  
pp. 156-164 ◽  
Author(s):  
Yoshio Shima ◽  
Akihiro Koyama ◽  
Motohiro Uo ◽  
Takashi Ono

Introduction: This study aimed to evaluate the binding frictional resistance of improved superelastic nickel- titanium alloy wires (ISW) with different bracket combinations and to verify the effectiveness of low binding frictional materials by applying them in orthodontic treatment. Materials and Methods: Straight stainless steel wire (SSW; 0.016 × 0.022-inch) and straight ISW (0.016 × 0.022- inch) were set to each displaced bracket, and the tensile resistance load was measured. The maximum tensile resistance load was statistically compared using the Tukey test. For exemplification, we treated a typical extraction case of Angle Class I crowding malocclusion with lip protrusion using lower binding frictional materials, which were selected based on tensile test results. Results: The SSW and metal bracket combination had the largest maximum tensile resistance load, and the ISW and metal slot-equipped plastic bracket combination had the smallest load (P < 0.01). In a patient treated using lower binding frictional materials, the active treatment period was 9 months. Satisfactory patient results were obtained without using reinforced anchorage. Conclusions: Binding frictional resistance varies, depending on the archwire and bracket combination. In a multibracket appliance, selecting materials with as low a binding frictional resistance as possible may make a more effective treatment.


Author(s):  
Nouf Alsabti ◽  
Christoph Bourauel ◽  
Nabeel Talic

Abstract Objective The goal was to measure and compare the amount of force loss during tooth movement guided by archwires, including a newly introduced low-friction titanium molybdenum alloy (TMA), conventional TMA, and stainless steel archwires. Methods The force loss was measured using a specialized biomechanical set-up, the orthodontic measurement and simulation system (OMSS). A total of 30 specimen were used (10 low-friction TMA (TMA-Low), 10 conventional TMA (TMA-C), and 10 stainless steel (SS) archwires, each having a dimension of 0.016 × 0.022 inches). The conventional and low friction TMA archwires served as test groups, while the SS archwires served as the control group. Results The mean values of force loss between the three types of wires (TMA‑C, TMA-Low, and SS) were significantly different (p < 0.0001). The highest mean force loss during sliding movement was found in the conventional TMA group (72.1%), followed by low friction TMA (48.8%) and stainless steel wires (33.7%) in a descending order. Conclusion The friction property of the low friction TMA archwire was superior to the conventional TMA archwire but was still inferior to the stainless steel archwire.


2019 ◽  
Vol 53 (2) ◽  
pp. 117-125
Author(s):  
Jayanti Choudhary ◽  
B Shashikumar ◽  
Anand K Patil

Aims: This study aimed to evaluate and compare the effect of tea tree oil (TTO) mouthwash and chlorhexidine (CHX) mouthwash on frictional resistance. Settings and Design: In vitro. Materials and Methods: In total, 60 extracted premolars were mounted on a custom-made acrylic fixture. These 60 premolars were randomly divided into 3 groups of 20 each, on which 0.022″ × 0.028″ slot MBT stainless steel brackets were bonded and 0.019″ × 0.025″ rectangular stainless steel wire was ligated with an elastomeric module. The 3 groups included a control group where the samples were immersed in artificial saliva and 2 experimental groups immersed in 0.2% CHX and TTO mouthwash, respectively, for 1.5 hours. Postimmersion static frictional resistance was evaluated on a universal testing machine at crosshead speed of 0.5 mm/min. Statistical Analysis Used: Tukey’s post hoc procedure. Results: This study showed a statistically significant difference in the frictional resistance between saliva and CHX groups and CHX and TTO groups ( P < .05). No statistically significant difference was observed between saliva and TTO groups ( P > .05). The frictional resistance was more in the CHX mouthwash group than in the TTO mouthwash group. Conclusions: Frictional resistance was lesser in the TTO mouthwash than in the CHX mouthwash. Based on this result, TTO mouthwash can be used instead of CHX mouthwash as an oral hygiene aid in patients with orthodontic treatments.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Amanpreet Singh Natt ◽  
Amandeep Kaur Sekhon ◽  
Sudhir Munjal ◽  
Rohit Duggal ◽  
Anup Holla ◽  
...  

Aim. To compare and evaluate the static frictional resistance offered by the four different types of ligation methods in both dry and wet conditions and at different durations when immersed in artificial saliva.Material and Methods. Alastik Easy to Tie modules, Super Slick Mini Stix elastomeric modules, Power “O” modules, and 0.009″Stainless Steel ligatures were used to compare the static friction using maxillary canine and premolar Preadjusted Edgewise brackets with 0.022″× 0.028″slot and 0.019″× 0.025″stainless steel wires.Results. The mean frictional resistance for Alastik modules was the lowest and that of Stainless Steel ligatures was found to be highest among the four groups compared and the difference among the four groups was statistically significant (P<0.005). The mean static frictional resistance in all groups under dry conditions was lower than that under wet conditions. No statistical significant differences were found when the groups were compared at different time periods of immersion in artificial saliva.Conclusion. This study concludes that the Alastik modules showed the lowest mean static frictional forces compared to any other ligation method, though no significant difference was found for different time periods of immersion in the artificial saliva.


Sign in / Sign up

Export Citation Format

Share Document