scholarly journals Effect of garlic on bacterial biofilm formation on orthodontic wire

2011 ◽  
Vol 81 (5) ◽  
pp. 895-900 ◽  
Author(s):  
Heon-Jin Lee ◽  
Hyo-Sang Park ◽  
Kyo-Han Kim ◽  
Tae-Yub Kwon ◽  
Su-Hyung Hong

Abstract Objective: To examine the effect of garlic extract on the biofilm formation by Streptococcus mutans on orthodontic wire and on glucosyltransferase gene expression. Materials and Methods: Growth inhibition of oral bacteria was tested after 50 µL of garlic extract was placed on an agar plate. The minimum inhibitory concentration (MIC) of garlic extract on S mutans growth was first determined. After cultivating streptococci in biofilm medium (BM)-sucrose with garlic extract and orthodontic wire, adenosine triphosphate (ATP) measurement and viable cell counting was performed from the bacteria attached on the wire. Scanning electron microscopy (SEM) analysis of morphology was observed on bacterial cells attached to orthodontic wire. The effect of garlic extract on gene expression was evaluated using quantitative real-time polymerase chain reaction (PCR) of glucosyltransferase. Results: Though garlic extract had a clear antibacterial effect on all microorganisms, it also enhanced S mutans attachment on orthodontic wire. Low concentration of garlic extract also increased glucosyltransferase gene expression of S mutans. Conclusions: Despite its antibacterial function, garlic extract increases biofilm formation by S mutans to orthodontic wire, likely through upregulation of glucosyltransferase expression. Garlic extract may thus play an important role in increased bacterial attachment to orthodontic wires.

2008 ◽  
Vol 74 (11) ◽  
pp. 3551-3558 ◽  
Author(s):  
Rebecca Munk Vejborg ◽  
Per Klemm

ABSTRACT Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development of biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle α-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive proteins may offer an attractive measure for reducing or delaying biofilm-associated infections.


2019 ◽  
Vol 56 (1) ◽  
pp. 144-147
Author(s):  
Maria Bolat ◽  
Dana Gabriela Bosinceanu ◽  
Ioan Gabriel Sandu ◽  
Dan Nicolae Bosinceanu ◽  
Zinovia Surlari ◽  
...  

The aim of this study was to compare the biofilm formation on three types of dental crown materials using adenosine triphosphate (ATP) driven bioluminescence as an innovative tool for the rapid chairside enumeration of oral bacteria and assessment of oral hygiene. The study group included 60 patients with fixed prosthodontics, made of three types of dental crown materials (BioHpp - Bredent, Ceramics - VITA VMK Master, and Zirconia - Vita In-Ceram) from which we have collected 60 specimen values using a luciferase-based assay system (system SURE II). The values of ATP were obtained with System SURE II device and statistically analyzed with Anova and Wilcoxon Test. The lowest value was shown for Zirconia, comparing with ceramics and BioHpp, but in time we have seen the increase of ATP for all three dental crown materials.


2019 ◽  
Vol 102 (4) ◽  
pp. 1228-1234 ◽  
Author(s):  
Raid Al Akeel ◽  
Ayesha Mateen ◽  
Rabbani Syed

Abstract Background: Alanine-rich proteins/peptides (ARP), with bioactivity of up to 20 amino acid residues, can be observed by the body easily during gastrointestinal digestion. Objective: Populus trichocarpa extract’s capability to attenuate quorum sensing-regulated virulence and biofilm formation in Staphylococcus aureus is described. Methods: PT13, an ARP obtained from P. trichocarpa, was tested for its activity against S. aureus using the broth microdilution test; a crystal-violet biofilm assay was performed under a scanning electron microscope. The production of various virulence factors was estimated with PT13 treatment. Microarray gene expression profiling of PT13-treated S. aureus was conducted and compared with an untreated control. Exopolysaccharides (EPS) was estimated to observe the PT13 inhibition activity. Results: PT13 was antimicrobial toward S. aureus at different concentrations and showed a similar growth rate in the presence and absence of PT13 at concentrations ≤8 μg/mL. Biofilm production was interrupted even at low concentrations, and biofilm-related genes were down-regulated when exposed to PT13. The genes encoding cell adhesion and bacterial attachment protein were the major genes suppressed by PT13. In addition, hemolysins, clumping activity, and EPS production of S. aureus decreased after treatment in a concentration-dependent manner. Conclusions: A long-chain PT13 with effective actions that, even at low concentration levels, not only regulated the gene expression in the producer organism but also blocked the virulence gene expression in this Gram-positive human pathogen is described. Highlights: We identified a PT13 as a potential antivirulence agent that regulated production of bacterial virulence determinants (e.g., toxins, enzymes and biofilm), downwards and it may be a promising anti-virulence agent to be further developed as an anti-infective agent.


Microbiology ◽  
2011 ◽  
Vol 157 (9) ◽  
pp. 2595-2603 ◽  
Author(s):  
Ruisheng An ◽  
Parwinder S. Grewal

Extensive studies of the well-known legume and rhizobium symbiosis model system suggest that the purine metabolic pathway plays a key role in microbe–plant interactions, although the exact mechanism is unknown. Here, we report the impact of a key purine metabolic gene, purL, on the symbiotic interaction between the bacterium Photorhabdus temperata and its nematode partner Heterorhabditis bacteriophora. Real-time PCR assays showed that the purL gene was upregulated in P. temperata in the nematode infective juvenile compared with artificial media. Mutation of the purL gene by in-frame deletion dramatically decreased the capacity of the bacterium to persist in infective juveniles and its ability to form biofilm in vitro. It was further demonstrated that purL gene expression was positively related to bacterial biofilm formation and the symbiotic persistence of the bacterium in nematode infective juveniles. A ΔpurL mutant lost the ability to support infective juvenile formation in the media which weakly supported biofilm formation, suggesting that a critical level of biofilm formation is required by the bacteria to support infective juvenile formation and thus establish their partnership. In addition, the defects in both biofilm formation and symbiotic ability due to the disruption of the purL gene could be partially restored by the addition of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an intermediate of the purine biosynthesis pathway. Overall, these data indicate that the purine metabolic pathway is important in microbe–animal symbioses, and that it may influence symbiotic interactions at the level of biofilm formation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Donald C. Hall ◽  
Phillip Palmer ◽  
Hai-Feng Ji ◽  
Garth D. Ehrlich ◽  
Jarosław E. Król

Recent advances in 3D printing have led to a rise in the use of 3D printed materials in prosthetics and external medical devices. These devices, while inexpensive, have not been adequately studied for their ability to resist biofouling and biofilm buildup. Bacterial biofilms are a major cause of biofouling in the medical field and, therefore, hospital-acquired, and medical device infections. These surface-attached bacteria are highly recalcitrant to conventional antimicrobial agents and result in chronic infections. During the COVID-19 pandemic, the U.S. Food and Drug Administration and medical officials have considered 3D printed medical devices as alternatives to conventional devices, due to manufacturing shortages. This abundant use of 3D printed devices in the medical fields warrants studies to assess the ability of different microorganisms to attach and colonize to such surfaces. In this study, we describe methods to determine bacterial biofouling and biofilm formation on 3D printed materials. We explored the biofilm-forming ability of multiple opportunistic pathogens commonly found on the human body including Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus to colonize eight commonly used polylactic acid (PLA) polymers. Biofilm quantification, surface topography, digital optical microscopy, and 3D projections were employed to better understand the bacterial attachment to 3D printed surfaces. We found that biofilm formation depends on surface structure, hydrophobicity, and that there was a wide range of antimicrobial properties among the tested polymers. We compared our tested materials with commercially available antimicrobial PLA polymers.


2020 ◽  
Vol 86 (21) ◽  
Author(s):  
Nataliya A. Teteneva ◽  
Sergey V. Mart’yanov ◽  
María Esteban-López ◽  
Jörg Kahnt ◽  
Timo Glatter ◽  
...  

ABSTRACT In most ecosystems, bacteria exist primarily as structured surface-associated biofilms that can be highly tolerant to antibiotics and thus represent an important health issue. Here, we explored drug repurposing as a strategy to identify new antibiofilm compounds, screening over 1,000 compounds from the Prestwick Chemical Library of approved drugs for specific activities that prevent biofilm formation by Escherichia coli. Most growth-inhibiting compounds, which include known antibacterial but also antiviral and other drugs, also reduced biofilm formation. However, we also identified several drugs that were biofilm inhibitory at doses where only a weak effect or no effect on planktonic growth could be observed. The activities of the most specific antibiofilm compounds were further characterized using gene expression analysis, proteomics, and microscopy. We observed that most of these drugs acted by repressing genes responsible for the production of curli, a major component of the E. coli biofilm matrix. This repression apparently occurred through the induction of several different stress responses, including DNA and cell wall damage, and homeostasis of divalent cations, demonstrating that biofilm formation can be inhibited through a variety of molecular mechanisms. One tested drug, tyloxapol, did not affect curli expression or cell growth but instead inhibited biofilm formation by suppressing bacterial attachment to the surface. IMPORTANCE The prevention of bacterial biofilm formation is one of the major current challenges in microbiology. Here, by systematically screening a large number of approved drugs for their ability to suppress biofilm formation by Escherichia coli, we identified a number of prospective antibiofilm compounds. We further demonstrated different mechanisms of action for individual compounds, from induction of replicative stress to disbalance of cation homeostasis to inhibition of bacterial attachment to the surface. Our work demonstrates the potential of drug repurposing for the prevention of bacterial biofilm formation and suggests that also for other bacteria, the activity spectrum of antibiofilm compounds is likely to be broad.


1994 ◽  
Vol 16 (9) ◽  
pp. 903-908 ◽  
Author(s):  
Ching-Tsan Huang ◽  
Steven W. Peretti ◽  
James D. Bryers

F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 267
Author(s):  
Phat L. Tran ◽  
Keaton Luth ◽  
James Wang ◽  
Coby Ray ◽  
Anselm de Souza ◽  
...  

Background:It is necessary to develop new strategies to protect against bacteria such as Streptococcus mutans, Streptococcus sanguis, andStreptococcus salivarius, which contribute to tooth decay and plaque formation. Our current study investigated the efficacy of a colloidal silver gel in inhibiting biofilm formation by these principal oral bacteria, in vitro. The aim of this study was to assess the efficacy of a colloidal silver gel formulation for inhibiting bacterial biofilm formation (Ag-gel) by the principal bacteria that cause plaque formation and tooth decay.Methods:The effect of Ag-gel on viability ofS. mutans,S. sanguis,and S. salivariuswas assessed by quantifying their colony forming units (CFU) in presence or absence of the test gel. The effect of this formulation on biofilm-forming ability of these bacteria was studied through scanning electron microscopy.Results:Using the CFU assays, over 6 logs of inhibition (100%) were found forS. mutans,S. sanguis, andS. salivariusfor the Ag-gel-treated bacteria when compared with the control gel. In addition, the Ag-gel also inhibited biofilm formation by these three bacteria mixed together. These results were confirmed by scanning electron microscopy.Conclusions:The Ag-gel was effective in preventing biofilm formation byS. mutans, S. sanguis, and S. salivarius. This Ag-gel should be tested for the ability to block plaque formation in the mouth, through its use as a tooth paste.


2021 ◽  
Author(s):  
Denise A. Ludvik ◽  
Katherine M. Bultman ◽  
Mark J. Mandel

ABSTRACTThe symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and its exclusive light-organ symbiont, Vibrio fischeri, provides a natural system in which to study host-microbe specificity and gene regulation during the establishment of a mutually-beneficial symbiosis. Colonization of the host relies on bacterial biofilm-like aggregation in the squid mucus field. Symbiotic biofilm formation is controlled by a two-component signaling (TCS) system consisting of regulators RscS-SypF-SypG, which together direct transcription of the Syp symbiotic polysaccharide. TCS systems are broadly important for bacteria to sense environmental cues and then direct changes in behavior. Previously, we identified hybrid histidine kinase BinK as a strong negative regulator of V. fischeri biofilm regulation, and here we further explore the function of BinK. To inhibit biofilm formation, BinK requires the predicted phosphorylation sites in both the histidine kinase (H362) and receiver (D794) domains. Furthermore, we show that a strain lacking BinK yields RscS non-essential for host colonization, and imaging of aggregate size revealed no benefit to the presence of RscS in a background lacking BinK. Strains lacking RscS still suffered in competition, suggesting another function for the protein. Finally, we show that BinK functions to inhibit biofilm gene expression in the light organ crypts, providing evidence for biofilm gene regulation at later stages of host colonization. Overall, this study provides direct evidence for opposing activities of RscS and BinK and yields novel insights into biofilm regulation during the maturation of a beneficial symbiosis.IMPORTANCEBacteria are often in a biofilm state, and transitions between planktonic and biofilm lifestyles are important for pathogenic, beneficial, and environmental microbes. The critical nature of biofilm formation during Vibrio fischeri colonization of the Hawaiian bobtail squid light organ provides an opportunity to study development of this process in vivo using a combination of genetic and imaging approaches. The current work refines the signaling circuitry of the biofilm pathway in V. fischeri, provides evidence that biofilm regulatory changes occur in the host, and identifies BinK as one of the regulators of that process. This study provides information about how bacteria regulate biofilm gene expression in an intact animal host.


2021 ◽  
Author(s):  
Denise A. Ludvik ◽  
Katherine M. Bultman ◽  
Mark J. Mandel

The symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and its exclusive light-organ symbiont, Vibrio fischeri, provides a natural system in which to study host-microbe specificity and gene regulation during the establishment of a mutually-beneficial symbiosis. Colonization of the host relies on bacterial biofilm-like aggregation in the squid mucus field. Symbiotic biofilm formation is controlled by a two-component signaling (TCS) system consisting of regulators RscS-SypF-SypG, which together direct transcription of the Syp symbiotic polysaccharide. TCS systems are broadly important for bacteria to sense environmental cues and then direct changes in behavior. Previously, we identified hybrid histidine kinase BinK as a strong negative regulator of V. fischeri biofilm regulation, and here we further explore the function of BinK. To inhibit biofilm formation, BinK requires the predicted phosphorylation sites in both the histidine kinase (H362) and receiver (D794) domains. Furthermore, we show that RscS is not essential for host colonization when binK is deleted from strain ES114, and imaging of aggregate size revealed no benefit to the presence of RscS in a background lacking BinK. Strains lacking RscS still suffered in competition. Finally, we show that BinK functions to inhibit biofilm gene expression in the light organ crypts, providing evidence for biofilm gene regulation at later stages of host colonization. Overall, this study provides direct evidence for opposing activities of RscS and BinK and yields novel insights into biofilm regulation during the maturation of a beneficial symbiosis. IMPORTANCE Bacteria are often in a biofilm state, and transitions between planktonic and biofilm lifestyles are important for pathogenic, beneficial, and environmental microbes. The critical nature of biofilm formation during Vibrio fischeri colonization of the Hawaiian bobtail squid light organ provides an opportunity to study development of this process in vivo using a combination of genetic and imaging approaches. The current work refines the signaling circuitry of the biofilm pathway in V. fischeri, provides evidence that biofilm regulatory changes occur in the host, and identifies BinK as one of the regulators of that process. This study provides information about how bacteria regulate biofilm gene expression in an intact animal host.


Sign in / Sign up

Export Citation Format

Share Document