Multipurpose Spatiomotor Capture System for Haptic and Visual Training and Testing in the Blind and Sighted

2021 ◽  
Vol 2021 (11) ◽  
pp. 160-1-160-7
Author(s):  
Lora T. Likova ◽  
Kristyo N. Mineff ◽  
Christopher W. Tyler

We describe the development of a multipurpose haptic stimulus delivery and spatiomotor recording system with tactile mapoverlays for electronic processing This innovative multipurpose spatiomotor capture system will serve a wide range of functions in the training and behavioral assessment of spatial memory and precise motor control for blindness rehabilitation, both for STEM learning and for navigation training and map reading. Capacitive coupling through the map-overlays to the touch-tablet screen below them allows precise recording i) of hand movements during haptic exploration of tactile raised-line images on one tablet and ii) of line-drawing trajectories on the other, for analysis of navigational errors, speed, time elapsed, etc. Thus, this system will provide for the first time in an integrated and automated manner quantitative assessments of the whole ‘perception-cognitionaction’ loop – from non-visual exploration strategies, spatial memory, precise spatiomotor control and coordination, drawing performance, and navigation capabilities, as well as of haptic and movement planning and control. The accuracy of memory encoding, in particular, can be assessed by the memory-drawing operation of the capture system. Importantly, this system allows for both remote and in-person operation. Although the focus is on visually impaired populations, the system is designed to equally serve training and assessments in the normally sighted as well.

2018 ◽  
Vol 17 (5) ◽  
pp. 325-337 ◽  
Author(s):  
Hojjat Borna ◽  
Kasim Assadoulahei ◽  
Gholamhossein Riazi ◽  
Asghar Beigi Harchegani ◽  
Alireza Shahriary

Background & Objective: Neurodegenrative diseases are among the most widespread lifethreatening disorders around the world in elderly ages. The common feature of a group of neurodegenerative disorders, called tauopathies, is an accumulation of microtubule associated protein tau inside the neurons. The exact mechanism underlying tauopathies is not well-understood but several factors such as traumatic brain injuries and genetics are considered as potential risk factors. Although tau protein is well-known for its key role in stabilizing and organization of axonal microtubule network, it bears a broad range of functions including DNA protection and participation in signaling pathways. Moreover, the flexible unfolded structure of tau facilitates modification of tau by a wide range of intracellular enzymes which in turn broadens tau function and interaction spectrum. The distinctive properties of tau protein concomitant with the crucial role of tau interaction partners in the progression of neurodegeneration suggest tau and its binding partners as potential drug targets for the treatment of neurodegenerative diseases. Conclusion: This review aims to give a detailed description of structure, functions and interactions of tau protein in order to provide insight into potential therapeutic targets for treatment of tauopathies.


2021 ◽  
Vol 22 (5) ◽  
pp. 2754
Author(s):  
Naila Qayyum ◽  
Muhammad Haseeb ◽  
Moon Suk Kim ◽  
Sangdun Choi

Thioredoxin-interacting protein (TXNIP), widely known as thioredoxin-binding protein 2 (TBP2), is a major binding mediator in the thioredoxin (TXN) antioxidant system, which involves a reduction-oxidation (redox) signaling complex and is pivotal for the pathophysiology of some diseases. TXNIP increases reactive oxygen species production and oxidative stress and thereby contributes to apoptosis. Recent studies indicate an evolving role of TXNIP in the pathogenesis of complex diseases such as metabolic disorders, neurological disorders, and inflammatory illnesses. In addition, TXNIP has gained significant attention due to its wide range of functions in energy metabolism, insulin sensitivity, improved insulin secretion, and also in the regulation of glucose and tumor suppressor activities in various cancers. This review aims to highlight the roles of TXNIP in the field of diabetology, neurodegenerative diseases, and inflammation. TXNIP is found to be a promising novel therapeutic target in the current review, not only in the aforementioned diseases but also in prolonged microvascular and macrovascular diseases. Therefore, TXNIP inhibitors hold promise for preventing the growing incidence of complications in relevant diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Daisuke Kase ◽  
Keiji Imoto

Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels were first reported in heart cells and are recently known to be involved in a variety of neural functions in healthy and diseased brains. HCN channels generate inward currents when the membrane potential is hyperpolarized. Voltage dependence of HCN channels is regulated by intracellular signaling cascades, which contain cyclic AMP, PIP2, and TRIP8b. In addition, voltage-gated potassium channels have a strong influence on HCN channel activity. Because of these funny features, HCN channel currents, previously called funny currents, can have a wide range of functions that are determined by a delicate balance of modulatory factors. These multifaceted features also make it difficult to predict and elucidate the functional role of HCN channels in actual neurons. In this paper, we focus on the impacts of HCN channels on neural activity. The functions of HCN channels reported previously will be summarized, and their mechanisms will be explained by using numerical simulation of simplified model neurons.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1671
Author(s):  
Ráchel Sgallová ◽  
Edward A. Curtis

Methods of artificial evolution such as SELEX and in vitro selection have made it possible to isolate RNA and DNA motifs with a wide range of functions from large random sequence libraries. Once the primary sequence of a functional motif is known, the sequence space around it can be comprehensively explored using a combination of random mutagenesis and selection. However, methods to explore the sequence space of a secondary structure are not as well characterized. Here we address this question by describing a method to construct libraries in a single synthesis which are enriched for sequences with the potential to form a specific secondary structure, such as that of an aptamer, ribozyme, or deoxyribozyme. Although interactions such as base pairs cannot be encoded in a library using conventional DNA synthesizers, it is possible to modulate the probability that two positions will have the potential to pair by biasing the nucleotide composition at these positions. Here we show how to maximize this probability for each of the possible ways to encode a pair (in this study defined as A-U or U-A or C-G or G-C or G.U or U.G). We then use these optimized coding schemes to calculate the number of different variants of model stems and secondary structures expected to occur in a library for a series of structures in which the number of pairs and the extent of conservation of unpaired positions is systematically varied. Our calculations reveal a tradeoff between maximizing the probability of forming a pair and maximizing the number of possible variants of a desired secondary structure that can occur in the library. They also indicate that the optimal coding strategy for a library depends on the complexity of the motif being characterized. Because this approach provides a simple way to generate libraries enriched for sequences with the potential to form a specific secondary structure, we anticipate that it should be useful for the optimization and structural characterization of functional nucleic acid motifs.


2021 ◽  
Author(s):  
Wisely Chua ◽  
Si En Poh ◽  
Hao Li

The human skin is our outermost layer and serves as a protective barrier against external insults. Advances in next generation sequencing have enabled the discoveries of a rich and diverse community of microbes - bacteria, fungi and viruses that are residents of this surface. The genomes of these microbes also revealed the presence of many secretory enzymes. In particular, proteases which are hydrolytic enzymes capable of protein cleavage and degradation are of special interest in the skin environment which is enriched in proteins and lipids. In this minireview, we will focus on the roles of these skin-relevant microbial secreted proteases, both in terms of their widely studied roles as pathogenic agents in tissue invasion and host immune inactivation, and their recently discovered roles in inter-microbial interactions and modulation of virulence factors. From these studies, it has become apparent that while microbial proteases are capable of a wide range of functions, their expression is tightly regulated and highly responsive to the environments the microbes are in. With the introduction of new biochemical and bioinformatics tools to study protease functions, it will be important to understand the roles played by skin microbial secretory proteases in cutaneous health, especially the less studied commensal microbes with an emphasis on contextual relevance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Amruta Tendolkar ◽  
Aaron F. Pomerantz ◽  
Christa Heryanto ◽  
Paul D. Shirk ◽  
Nipam H. Patel ◽  
...  

The forewings and hindwings of butterflies and moths (Lepidoptera) are differentiated from each other, with segment-specific morphologies and color patterns that mediate a wide range of functions in flight, signaling, and protection. The Hox gene Ultrabithorax (Ubx) is a master selector gene that differentiates metathoracic from mesothoracic identities across winged insects, and previous work has shown this role extends to at least some of the color patterns from the butterfly hindwing. Here we used CRISPR targeted mutagenesis to generate Ubx loss-of-function somatic mutations in two nymphalid butterflies (Junonia coenia, Vanessa cardui) and a pyralid moth (Plodia interpunctella). The resulting mosaic clones yielded hindwing-to-forewing transformations, showing Ubx is necessary for specifying many aspects of hindwing-specific identities, including scale morphologies, color patterns, and wing venation and structure. These homeotic phenotypes showed cell-autonomous, sharp transitions between mutant and non-mutant scales, except for clones that encroached into the border ocelli (eyespots) and resulted in composite and non-autonomous effects on eyespot ring determination. In the pyralid moth, homeotic clones converted the folding and depigmented hindwing into rigid and pigmented composites, affected the wing-coupling frenulum, and induced ectopic scent-scales in male androconia. These data confirm Ubx is a master selector of lepidopteran hindwing identity and suggest it acts on many gene regulatory networks involved in wing development and patterning.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Denise S Walker ◽  
William R Schafer

Mechanosensation is central to a wide range of functions, including tactile and pain perception, hearing, proprioception, and control of blood pressure, but identifying the molecules underlying mechanotransduction has proved challenging. In Caenorhabditis elegans, the avoidance response to gentle body touch is mediated by six touch receptor neurons (TRNs), and is dependent on MEC-4, a DEG/ENaC channel. We show that hemichannels containing the innexin protein UNC-7 are also essential for gentle touch in the TRNs, as well as harsh touch in both the TRNs and the PVD nociceptors. UNC-7 and MEC-4 do not colocalize, suggesting that their roles in mechanosensory transduction are independent. Heterologous expression of unc-7 in touch-insensitive chemosensory neurons confers ectopic touch sensitivity, indicating a specific role for UNC-7 hemichannels in mechanosensation. The unc-7 touch defect can be rescued by the homologous mouse gene Panx1 gene, thus, innexin/pannexin proteins may play broadly conserved roles in neuronal mechanotransduction.


2021 ◽  
pp. 174702182110503
Author(s):  
Alastair David Smith ◽  
Carlo De Lillo

Search – the problem of exploring a space of alternatives in order to identify target goals – is a fundamental behaviour for many species. Although its foundation lies in foraging, most studies of human search behaviour have been directed towards understanding the attentional mechanisms that underlie the efficient visual exploration of two-dimensional scenes. With this review, we aim to characterise how search behaviour can be explained across a wide range of contexts, environments, spatial scales, and populations, both typical and atypical. We first consider the generality of search processes across psychological domains. We then review studies of interspecies differences in search. Finally, we explore in detail the individual and contextual variables that affect visual search and related behaviours in established experimental psychology paradigms. Despite the heterogeneity of the findings discussed, we identify that variations in control processes, along with the ability to regulate behaviour as a function of the structure of search space and the sampling processes adopted, to be central to explanations of variations in search behaviour. We propose a tentative theoretical model aimed at integrating these notions and close by exploring questions that remain unaddressed.


2017 ◽  
Vol 3 ◽  
pp. 6
Author(s):  
Madjid Momeni-Moghaddam ◽  
Elnaz Yossefi ◽  
Fatemeh Oladi

MicroRNAs (miRNAs) are small molecules that are involved in the regulation of cellular events. They can monitor protein production using a kind of gene expression inhibition called post transcriptional gene regulation. Nowadays a lot of them have been found in different kind of cellular process so they have a wide range of functions from common cell tasks to roles in the regulation of special functions including regeneration of damaged tissues. In recent years, there has been an increasing interest in the field of miRNAs. This paper will review the research conducted on the roles of miRNAs in stem cells and tissue/organ regeneration.


2018 ◽  
Vol 9 (10) ◽  
pp. 5198-5208 ◽  
Author(s):  
Hanjie Yu ◽  
Yaogang Zhong ◽  
Zhiwei Zhang ◽  
Xiawei Liu ◽  
Kun Zhang ◽  
...  

The bovine milk proteins have a wide range of functions, but the role of the attached glycans in their biological functions has not been fully understood yet.


Sign in / Sign up

Export Citation Format

Share Document