scholarly journals Death on Orbit: Extreme Environmental Conditions and the Deaths of American Astronauts

2018 ◽  
Vol 8 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Craig T. Mallak

When the Space Shuttle Columbia was lost in 2003, the investigation presented many unique challenges, including numerous findings that had never been observed by forensic pathologists. The previous two major space shuttle fatality incidents also presented unique and complex issues. The causes of these incidents are now identified and the environmental impacts on the astronauts were a major contributor to the tragedies. Even with the improvements learned from the losses of Apollo 1 (1967), the Challenger (1986), and the Columbia (2003), space flight continues to be one of the most dangerous professions and environmental factors are significant contributors to this threat. While many have now been explained, the myriad of environmental insults to the crew continues to be a source of interest for those involved in space flight. Most forensic pathologists will never be involved in a death investigation of astronauts at the edge of outer space, on a mission, or during training, yet the findings are nevertheless of interest in the field of environmental death.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Ruiz Potma Gonçalves ◽  
Umakant Mishra ◽  
Skye Wills ◽  
Sagar Gautam

AbstractUnderstanding the influence of environmental factors on soil organic carbon (SOC) is critical for quantifying and reducing the uncertainty in carbon climate feedback projections under changing environmental conditions. We explored the effect of climatic variables, land cover types, topographic attributes, soil types and bedrock geology on SOC stocks of top 1 m depth across conterminous United States (US) ecoregions. Using 4559 soil profile observations and high-resolution data of environmental factors, we identified dominant environmental controllers of SOC stocks in 21 US ecoregions using geographically weighted regression. We used projected climatic data of SSP126 and SSP585 scenarios from GFDL-ESM 4 Earth System Model of Coupled Model Intercomparison Project phase 6 to predict SOC stock changes across continental US between 2030 and 2100. Both baseline and predicted changes in SOC stocks were compared with SOC stocks represented in GFDL-ESM4 projections. Among 56 environmental predictors, we found 12 as dominant controllers across all ecoregions. The adjusted geospatial model with the 12 environmental controllers showed an R2 of 0.48 in testing dataset. Higher precipitation and lower temperatures were associated with higher levels of SOC stocks in majority of ecoregions. Changes in land cover types (vegetation properties) was important in drier ecosystem as North American deserts, whereas soil types and topography were more important in American prairies. Wetlands of the Everglades was highly sensitive to projected temperature changes. The SOC stocks did not change under SSP126 until 2100, however SOC stocks decreased up to 21% under SSP585. Our results, based on environmental controllers of SOC stocks, help to predict impacts of changing environmental conditions on SOC stocks more reliably and may reduce uncertainties found in both, geospatial and Earth System Models. In addition, the description of different environmental controllers for US ecoregions can help to describe the scope and importance of global and local models.


2021 ◽  
Vol 7 (4) ◽  
pp. 726-738
Author(s):  
Seyyed M. H. Abtahi ◽  
Ojaswi Aryal ◽  
Niveen S. Ismail

Zooplankton can significantly impact E. coli inactivation in wastewater, but inactivation rates are dependent on environmental conditions.


Author(s):  
I. V. Zlobina

The article discusses the results of a study of bending deformation and creep under transverse load of cured polymer composite materials (PCM), which were located for 8 months in full-scale environmental conditions in Saratov. It was found that being under the influence of natural climatic factors for the specified time leads to an increase in the bending deformation of samples from 13,5 to 25,4%, depending on the load. Processing in a microwave electromagnetic field with a frequency of 2450 MHz with an energy flux density of (17-18) x10 mW / cm for 2 minutes reduces bending deformation by (9-18)%, and creep - up to 4 times.


1972 ◽  
Vol 50 (12) ◽  
pp. 2673-2682 ◽  
Author(s):  
William H. Harvey ◽  
James D. Caponetti

Intact, set III, cinnamon fern cataphyll and frond primordia, which were shown to have no predisposition to fertility in situ, produced sporangia when excised and cultured under sterile conditions in Knudson's medium supplemented with various levels of sucrose and maintained on 11 different regimens of light, darkness, and temperature for 10 weeks. Increasing levels of sucrose resulted in increased fertility under all environmental conditions, but the highest percentage of fertility was obtained under conditions of continuous dark at 26 °C. As the length of the light phase of the photoperiods decreased, a progressive increase in induction of fertile leaves was observed, suggesting that periods of long light exposure are inhibitory to the initiation of sporangia. Conversely, as the light intensity was increased, an inhibition of sporophyll differentiation occurred. Sporangia excised from dark-induced sporophylls and cultured in the light produced viable spores which germinated yielding haploid gametophytes that ultimately produced sporophytes.


Author(s):  
Joseph Marlow ◽  
Christine H.L. Schönberg ◽  
Simon K. Davy ◽  
Abdul Haris ◽  
Jamaluddin Jompa ◽  
...  

Despite global deterioration of coral reef health, not all reef-associated organisms are in decline. Bioeroding sponges are thought to be largely resistant to the factors that stress and kill corals, and are increasing in abundance on many reefs. However, there is a paucity of information on how environmental factors influence spatial variation in the distribution of these sponges, and how they might be affected by different stressors. We aimed to identify the factors that explained differences in bioeroding sponge abundance and assemblage composition, and to determine whether bioeroding sponges benefit from the same environmental conditions that can contribute towards coral mortality. Abundance surveys were conducted in the Wakatobi region of Indonesia on reefs characterized by different biotic and abiotic conditions. Bioeroding sponges occupied an average of 8.9% of available dead substrate and variation in abundance and assemblage composition was primarily attributed to differences in the availability of dead substrate. Our results imply that if dead substrate availability increases as a consequence of coral mortality, bioeroding sponge abundance is also likely to increase. However, bioeroding sponge abundance was lowest on a sedimented reef, despite abundant dead substrate. This suggests that not all forms of coral mortality will benefit all bioeroding sponge species, and sediment-degraded reefs are likely to be dominated by a few resilient bioeroding sponge species. Overall, we demonstrate the importance of understanding the drivers of bioeroding sponge abundance and assemblage composition in order to predict possible impacts of different stressors on reefs communities.


2021 ◽  
Author(s):  
A.L. Maksimov

The paper considers modern approaches to the zoning of territories and the selection of people for life in extreme environmental conditions, taking into account modern geopolitical challenges. It is shown that it is possible, based on the allostasis concept, to conduct not only the selection of persons with a high level of nonspecific resistance, but also to quantify the degree of extremity of environmental factors using the standard represpiration test. Key words: adaptation, extreme conditions, selection, hypoxia, cold, rerespiration, allostatic load.


1998 ◽  
Vol 4 (S2) ◽  
pp. 1132-1133
Author(s):  
Heide Schatten ◽  
Amitabha Chakrabarti ◽  
Meghan Taylor ◽  
Michael Crosser ◽  
Kirk Mitchell

Sea urchins have been used for over a century as a remarkable animal model system in which to study cell, molecular, and developmental biology. The studies presented here have used sea urchin eggs and embryos for pioneering experiments to explore the effects of microgravity on the cytoskeleton during a space flight on the space shuttle Endeavor. The culture conditions followed those described previously utilizing the Aquatic Research Facility (ARF) to fertilize and culture eggs and embryos up to the pluteus stage under controlled temperature (12°C) and fixation conditions. To achieve a final fixation with 0.5% glutaraldehyde and 4μM taxol, concentrated fixation fluid was injected at preselected time points to preserve microtubules, centrioles, centrosomes, microfilaments, mitochondria, and cell membranes.The analysis of the results revealed that the centriole-centrosome complex during cell division and cilia formation showed alterations in samples that had been exposed to microgravity while control cells cultured in a centrifuge at lg in space and those cultured on ground appeared normal.


Author(s):  
Cyril Tissot ◽  
Etienne Neethling ◽  
Mathias Rouan ◽  
Gérard Barbeau ◽  
Hervé Quénol ◽  
...  

This paper focuses on simulating environmental impacts on grapevine behavioral dynamics and vineyard management strategies. The methodology presented uses technology from geomatics object oriented databases and spatio-temporal data models. Our approach has two principle objectives, first, to simulate grapevine phenology and grape ripening under spatial and temporal environmental conditions and constraints and secondly, to simulate viticultural practices and adaptation strategies under various constraints (environmental, economical, socio-technical). The approach is based on a responsive agent-based structure where environmental conditions and constraints are considered as a set of forcing data (biophysical, socio-economic and regulatory data) that influences the modelled activities. The experiment was conducted in the regulated wine producing appellation Grand Cru “Quarts de Chaume”, situated in the middle Loire Valley, France. All of the methodology, from the implementation of the knowledge database to the analysis of the first simulation, is presented in this paper.


Author(s):  
Ruth Guthrie ◽  
Conrad Shayo

The National Aeronautics and Space Administration (NASA) is a government organization, founded to explore space to better understand our own planet and the universe around us. Over NASA’s history, there have been unprecedented successes: Apollo missions that put people into space and walking on the moon, the remarkable findings of the Hubble space telescope and the Space Shuttle Program, allowing astronauts to perform scientific experiments in orbit from are usable space vehicle. NASA continues to be a source of national wonder and pride for the United States and the world. However, NASA has failures too. In February of 2002, the Space Shuttle Columbia disintegrated as it returned to Earth. This event occurred 16 years after the Space Shuttle Challenger exploded during take-off. As information was collected, investigators found that many of the problems uncovered during the Challenger investigation were also factors for Columbia. Underlying both disasters was the problem of relaying complex engineering information to management, in an environment driven by schedule and budget pressure. Once again, NASA is looking at ways to better manage space programs in an environment of limited resources.


Sign in / Sign up

Export Citation Format

Share Document