scholarly journals On joint efficiency of composite anisotropic plate rigidly fixed along outside edges

2020 ◽  
Vol 19 (4) ◽  
pp. 304-309
Author(s):  
A. G. Akopyan

Introduction. Modern processes of welding, surfacing, soldering and bonding provide producing structural elements of monolithic interconnected dissimilar anisotropic materials. The combination of different materials with qualities corresponding to certain operating conditions offer comprehensive facilities to improve the technical and economic characteristics of machines, equipment and structures. It can contribute to a significant increase in their reliability, durability, and to reduction of the production and operation costs. Materials and Methods. The work objective is to study the boundary state of stress of anisotropic composite plates in the framework of the classical theory of plate bending. The outer edges of the plate are considered free. Using the classical theory of bending of an anisotropic plate in the space of physical and geometric parameters, hypersurface equations are obtained that define low-stressed zones for the contact surface edge of a cylindrical orthotropic composite plate.Research Results. Finding the criteria for engineering structures to determine the limiting strength characteristics of structural elements is one of the urgent tasks of the deformable solid mechanics. Strength problems in structures are often reduced to elucidating the nature of the local stress state at the tops of the joints of the constituent parts. This paper is devoted to solving this problem for composite anisotropic plates in the area of their bending.Discussion and Conclusions. The solution proposed in this paper may be useful for increasing the strength of composite products.

Author(s):  
Ashot G. Akopyan ◽  

Modern technology shows increased demands on the strength properties of machines, their parts, as well as various structures, reducing their weight, volume and size, which leads to the need to use anisotropic composite materials. Finding criteria to determine the ultimate strength characteristics of structural elements, engineering structures is one of the urgent problems of solid mechanics. Strength problems in structures are often reduced to finding out the nature of the local stress state at the vertices of the joints of the constituent parts. The solution of this urgent problem for composite anisotropic plates can be found in this article, where the author continues the research in this area, extending them to the bending of anisotropic composite plates. The aim of the work is to study the limit stress state of anisotropic composite plates in the framework of the classical theory of plate bending. The outer edges of the plate are considered to be free. Using the classical theory of anisotropic plate bending in the space of physical and geometric parameters, the hypersurface equations determining the low-stress zones for the edge of the contact surface of a composite cylindrical orthotropic plate are obtained. Modern technological processes of welding, surfacing, soldering and bonding allow to produce structural elements of monolithic interconnected dissimilar anisotropic materials. The combination of different materials with qualities corresponding to certain operating conditions opens up great opportunities to improve the technical and economic characteristics of machines, equipment and structures. It can contribute to a significant increase in their reliability, durability, reduce the cost of production and operation. On this basis, the solution proposed in this work can be useful to increase the strength of composite materials.


Author(s):  
Syed M. Rahman ◽  
Tasnim Hassan

Ratcheting is defined as the accumulation of strain or deformation in structures under cyclic loading. Damage accumulation due to ratcheting can cause failure of structures through fatigue cracks or plastic collapse. Ratcheting damage accumulation in structures may occur under repeated reversals of loading induced by earthquakes, extreme weather conditions, and mechanical and thermal operating conditions. A major challenge in structural and solid mechanics is the prediction of ratcheting responses of structures under any or combination of these loading conditions. Accurate prediction of ratcheting-fatigue and ratcheting-collapse is imperative in order to incorporate the ratcheting related failures into the ASME design Code in a rational manner. This would require predictions of both local (stress-strain) and global (load-deflection) responses simultaneously. In progressing towards this direction, a set of experimental ratcheting responses for straight and elbow piping components and notched plates is developed. Advanced cyclic plasticity models, such as, modified Chaboche, Ohno-Wang, and AbdelKarim-Ohno models, are implemented in ANSYS for simulation of these experimental responses. Various integration schemes for implementing the constitutive models into the structural analysis code ANSYS are studied. Results from the experimental and analytical studies are presented and discussed in order to demonstrate the current state of simulation modeling of structural ratcheting.


Author(s):  
I. V. Stankevich ◽  
S. S. Volkov

Further development of power and, primarily, engine engineering is associated with significantly increasing specific indicators. For example, the main trend in development of gas turbine engines is to increase gas parameters before the turbine. At the same time, there is an intensive growth of thermal and mechanical tension, and first of all this applies to the parts and components of the flow range. The destruction of these structural elements may have grave consequences. Increasing reliability and durability of responsible components of engines under operating conditions of complex cyclic thermo-mechanical loading is one of the priority tasks of modern engine engineering.One of the factors to determine a design performance is high-temperature creep. When solving the problems of deformable solid mechanics (DSM) in terms of creep, various options of the theory of hereditary creep and three main technical theories of aging, flow and hardening are widely used. There are also theories known that use an apparatus of the structural models and mechanical analogues to describe the creep. Most theories satisfactorily describe the creep strain under constant or slowly changing loads. Analysis of stress-strain states under variable loads is better described by the theories of flow and hardening, and the theory of hardening has some advantages over the theories of flow, as it gives more exact approximation for experiment results. From the point of view of the computing cycle arrangement, the technical theories have well-known advantages over the hereditary ones.When using the finite element method (FEM) to solve the boundary value problems of DSM considering the creep strain, an explicit or implicit Euler scheme is very often used. Depending on the features of the problem under consideration, a solution algorithm is constructed either in accordance with the method of initial stress, or by the method of initial strains. The method of initial strains when solving the problems in terms of creep is used more often, because the application of an initial stress method for this class of problems is technically much more complicated. The paper examines the explicit and implicit Euler schemes in combination with FEM. Both schemes are formulated in accordance with the method of initial strains. A constitutive relation was chosen in the form of the theory of flows.


Author(s):  
Valentin V. Matveev ◽  
◽  
Anatoliy P. Zinkovskii ◽  

On February 1, the scientific community celebrates the 90th anniversary of a prominent Ukrainian scientist in the field of deformable solid mechanics, laureate of the USSR State Prize (1982), the State Prize of Ukraine in Science and Technology (1997), Honored Worker of Science and Technology of Ukraine (2001), laureate of S.P. Tymoshenko (2004) and G.S. Pysarenko (2011) Prizes of the NAS of Ukraine, Doctor of Technical Sciences (1972), Professor (1976), Academician of the NAS of Ukraine (1988) Anatoliy O. Lebedev.


2021 ◽  
Vol 2 ◽  
Author(s):  
Zhiping Qiu ◽  
Han Wu ◽  
Isaac Elishakoff ◽  
Dongliang Liu

Abstract This paper studies the data-based polyhedron model and its application in uncertain linear optimization of engineering structures, especially in the absence of information either on probabilistic properties or about membership functions in the fussy sets-based approach, in which situation it is more appropriate to quantify the uncertainties by convex polyhedra. Firstly, we introduce the uncertainty quantification method of the convex polyhedron approach and the model modification method by Chebyshev inequality. Secondly, the characteristics of the optimal solution of convex polyhedron linear programming are investigated. Then the vertex solution of convex polyhedron linear programming is presented and proven. Next, the application of convex polyhedron linear programming in the static load-bearing capacity problem is introduced. Finally, the effectiveness of the vertex solution is verified by an example of the plane truss bearing problem, and the efficiency is verified by a load-bearing problem of stiffened composite plates.


2017 ◽  
Vol 755 ◽  
pp. 300-321 ◽  
Author(s):  
Volodymyr I. Korsun ◽  
Yu.Yu. Kalmykov ◽  
S.Yu. Makarenko

The paper is about the generally accepted in the deformable solid mechanics principles of constructing limiting surfaces of concrete strength in the principal stress space. The background and theoretical approaches taken by different researchers to describe the functions of deviatoric and meridional curves as the basic elements which determine the surface configuration of concrete strength were analyzed.There was carried out a comparative analysis of different authors’ suggestions on an analytic description of concrete strength for different stress states and a comparison of the developed criteria and the results of short-term tests of plane concrete under multiaxial loadings. Comparing the methods taken for developing the interpolation functions of deviatoric and meridional curves, it was inferred that the application of different approaches to the development of concrete failure criteria is effective. Keeping in mind the results of the comparative analysis of the prerequisites taken to develop the above failure criteria and the requirements of a better approximation of the experimental data, there are made new suggestions to describe concrete strength for the general case of stress state.


Author(s):  
Dieter Weichert ◽  
Abdelkader Hachemi

The special interest in lower bound shakedown analysis is that it provides, at least in principle, safe operating conditions for sensitive structures or structural elements under fluctuating thermo-mechanical loading as to be found in power- and process engineering. In this paper achievements obtained over the last years to introduce more sophisticated material models into the framework of shakedown analysis are developed. Also new algorithms will be presented that allow using the addressed numerical methods as post-processor for commercial finite element codes. Examples from practical engineering will illustrate the potential of the methodology.


2021 ◽  
Vol 2021 (23) ◽  
pp. 214-224
Author(s):  
Artur Onyshchenko ◽  
◽  
Mykola Garkusha ◽  
Оlena Deli ◽  
◽  
...  

Introduction. Innovative, new materials are increasingly used in transport construction, among which composite materials are becoming widespread.Small bridges and elements of large bridges, such as roadway slabs, pavements, railings, composite reinforcement, reinforcement elements, are made of composite materials.Recently, the use of polymer composite materials for the manufacture of lightly loaded structural elements of transport structures, such as lighting poles, drainage trays, railings.Much attention should be paid to the fiberglass composite railing, which has a number of advantages over traditional metal fencing. Unfortunately, at present there are no clearly defined in Ukraine regulations on fiberglass composite fencing, so this topic is relevant and necessary for the transport industry.Problem Statement. From the literature analysis it is established that the railings of highways and sidewalks are in difficult operating conditions, are constantly exposed to aggressive environments - water, chemicals, salts.Goal. Increasing the durability of the railing by using new materials.Results. The analysis of production of a fiberglass profile is carried out. On the basis of the conducted researches the general requirements to a protection of fiberglass composite washing machine are established. On the basis of the current normative documents the classification of a protection on a place of installation, type of filling of a skeleton, a method of fastening of risers is developed. The paper presents the main parameters and dimensions of the fence. Material requirements are set. Methods of control of a protection with establishment of a technique of test of a protection on resistance to action of horizontal and vertical loadings are developed. Recommendations on installation and installation of a protection of fiberglass composite washing machine are offered.Conclusions. The research results were used in the development of technical conditions for the protection of fiberglass composite washing machine.Keywords: road, composite, bridge, fencing, profile, fiberglass, artificial construction


Author(s):  
JT Stephen ◽  
MB Marshall ◽  
R Lewis

Bolted joints are widely used in modern engineering structures and machine designs due to their low cost and reliability when correctly selected. Their integrity depends on quantitative representation of the contact pressure distribution at the interface during design. Because of the difficulty in reaching and assessing clamped interfaces with traditional experimental methods, presently bolted joint design and evaluation is based on theoretical analysis, with assumptions to quantify pressure distribution at the clamped interface, which may not represent their true operating conditions. The present work utilises a non-intrusive ultrasonic technique to investigate and quantify the pressure distribution in bolted joints. The effect of variation in plate thickness on the contact pressure distribution at bolted interfaces under varying axial loads is investigated. While it was observed that the contact pressure at the interface increases as the applied load increases, the distance from the edge of the bolt hole at which the distribution becomes stable is independent of the applied load on the bolted joint. However, the contact pressure distribution was observed to vary with the plate thickness. Although the variation in the peak value of the average contact pressure distribution in bolted joints does not depend on the plate thickness, the distance from the edge of bolt hole at which the value of the distribution becomes stable increases as the plate thickness is increased. It was also observed that the edge of the bolt head affected the position of the peak value of the contact pressure distribution at the interface, though its effect was dependent on plate thickness. Furthermore, a model based on a Weibull distribution has been proposed to fit the experimental data and a good correlation was observed.


Author(s):  
Changbing Tang ◽  
Yongjun Jiao ◽  
Yuanming Li ◽  
Yi Zhou ◽  
Kun Zhang

Abstract The cladding acts as the first barrier to prevent the release of radioactive fission products, requiring its structural integrity to be maintained throughout the whole operation period of nuclear reactor. Therefore, cladding failure due to PCI (pellet claading mechanical interaction) should be avoided as much as possible in fuel design and operating conditions. At the same time, it is necessary to achieve effective control of the cladding stress by limiting the power growth rate etc. However, in the manufacturing process of fuel rod, the MPS (missing pellet surface) defect is inevitably generated. This defect may lead to a substantial increase in the local stress of the cladding, which in turn exceeds its corresponding stress limit, resulting in cladding failure. Accurate simulation of fuel performance caused by such defects will help prevent such failures. The traditional fuel performance analysis codes are based on a 1.5D analysis framework and cannot handle the local asymmetry problem of fuel such as the MPS defect. In order to accurately simulate the PCI phenomenon caused by the MPS defect, this research establishes a fuel performance analysis code based on the ABAQUS software and this code is suit for the 2D and 3D conditions. Based on the established analysis code, the irradiation-thermal-mechanical behavior of nuclear fuel under typical II transient conditions was studied, and the sensitivity analysis of the influence of different MPS sizes on the local stress of cladding was carried out. The simulation results show that :(1)the mises stress, contact pressure and equivalent creep strain of the cladding may be unevenly distributed due to the MPS defect.(2)the MPS defect will result in a more severe contact pressure on cladding during power transient period, which may lead to failure of cladding and should be prevented. The simulation method established in this research could be very help for the performance analysis for the nuclear fuel rods.


Sign in / Sign up

Export Citation Format

Share Document