Fan Shaped Patch with Fan Shaped Defected Ground Structure is designed for X-band Applications

Author(s):  
K.S. Ravi Kumar ◽  
Lalbabu Prasad ◽  
B. Ramesh ◽  
K.P. Vinay

In this novel work a simple Fan Shaped Patch (FSP) Antenna is designed for X-band applications using Fan Shaped DGS structure to improve the Bandwidth and Gain. The Antenna is designed by using low cost FR4 Epoxy dielectric substrate material having dielectric constant of 4.4 with size 31.4x28.33x1.6mm3. The Antenna is simulated by using CST MW studio2014 software to analyze the results. The simulation results shows reasonable |S11|<-10 for the frequency range over 8.38 to 11.59GHz in X-band region.

2018 ◽  
Vol 7 (2.16) ◽  
pp. 7
Author(s):  
Amish Kumar Jha ◽  
Bharti Gupta Gupta ◽  
Preety D Swami

This paper presents an investigation of effect of substrate material properties on the performance of antenna. The simulations are tested for 30 different dielectric materials on the basic RPA antenna model as well as on the most common U shape model using CST Microwave Studio. Two designs are proposed. On the basis of simulation results it has been concluded that for the first design the best material is which has a dielectric constant of 2.7 (𝜀r = 2.7) with bandwidth improvements of around 69.33% to 88.6% as compared to the most frequently used materials at present. For the second design the best result is obtained for the material that has dielectric constant in the range 2.0 to 2.7.  For a material having dielectric constant of 2.1 (𝜀r = 2.1) bandwidth improvement of around 11.74% with respect to RT Duroid was observed. For the second design, radiations from all other materials were not available in the working frequency range of 1GHz to 6GHz.  


2018 ◽  
Vol 7 (1) ◽  
pp. 1-6 ◽  
Author(s):  
S. Sah ◽  
M. R. Tripathy ◽  
A. Mittal

A novel dual  layer rectangular printed Antenna based on loop type Frequency selective surfaces with five concentric rings and I shaped defected ground structure (DGS) is designed and investigated. The deigned antenna is tested for application in C band, WiFi devices and some cordless telephones and X band radiolocation, airborne and naval radars as multiband  operational frequencies are at 5.5GHz, 6.81GHz, 9.3GHz and thus covers two wireless communication band C Band (4 to 8GHz ) and  X band (8 to 12 GHz) The bandwidth is 200MHz, 300MHz and 1GHz respectively and measured gain of this designed antenna are 2.42dBi against 5.5GHz, 2.80dBi against 6.81GHz, 6.76dBi against 9.3GHz. The proposed antenna in addition to multiband operation also exhibits minituarization.The Floquet port technique is used to analyse concentric rings. The Results comparison of proposed structure with the basic dual layer antenna resonaing at 5.5GHz  shows the patch area is reduced by 58.15% while the volume of the antenna is reduced by 81.5%. 


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 201-209
Author(s):  
Mohammad Ahmad Salamin ◽  
Sudipta Das ◽  
Asmaa Zugari

AbstractIn this paper, a novel compact UWB antenna with variable notched band characteristics for UWB applications is presented. The designed antenna primarily consists of an adjusted elliptical shaped metallic patch and a partial ground plane. The proposed antenna has a compact size of only 17 × 17 mm2. The suggested antenna covers the frequency range from 3.1 GHz to 12 GHz. A single notched band has been achieved at 7.4 GHz with the aid of integrating a novel closed loop resonator at the back plane of the antenna. This notched band can be utilized to alleviate the interference impact with the downlink X-band applications. Besides, a square slot was cut in the loop in order to obtain a variable notched band. With the absence and the existence of this slot, the notched band can be varied to mitigate interference of the upper WLAN band (5.72–5.82 GHz) and X-band (7.25–7.75 GHz) with UWB applications. A good agreement between measurement and simulation results was achieved, which affirms the appropriateness of this antenna for UWB applications.


Author(s):  
Jaswinder Kaur ◽  
Rajesh Khanna ◽  
Machavaram Kartikeyan

In the present work, a novel multistrip monopole antenna fed by a cross-shaped stripline comprising one vertical and two horizontal strips has been proposed for wireless local area network (WLAN)/Industrial, Scientific, and Medical band (ISM)/International Mobile Telecommunication (IMT)/BLUETOOTH/Worldwide Interoperability for Microwave Access (WiMAX) applications. The designed antenna has a small overall size of 20 × 30 mm2. The goal of this paper is to use defected ground structure (DGS) in the proposed antenna design to achieve dual-band operation with appreciable impedance bandwidth at the two operating modes satisfying several communication standards simultaneously. The antenna was simulated using Computer Simulation Technology Microwave Studio (CST MWS) V9 based on the finite integration technique (FIT) with perfect boundary approximation. Finally, the proposed antenna was fabricated and some performance parameters were measured to validate against simulation results. The design procedure, parametric analysis, simulation results along with measurements for this multistrip monopole antenna using DGS operating simultaneously at WLAN (2.4/5.8 GHz), IMT (2.35 GHz), BLUETOOTH (2.45 GHz), and WiMAX (5.5 GHz) are presented.


2015 ◽  
Vol 9 (2) ◽  
pp. 317-325 ◽  
Author(s):  
Amanpreet Kaur ◽  
Rajesh Khanna ◽  
Machavaram Kartikeyan

In this paper, a three layered stacked circularly polarized rectangular dual band microstrip antenna with a defected ground structure (DGS) and a feed network with stub (showing dual wideband characteristic) is designed, fabricated, and tested for WLAN, Zig bee, Wi-Max, and IMT band applications. The proposed antenna is fabricated on an FR4 substrate with dielectric constant (εr) of 4.4; tanδ of 0.0024 and a height of 1.57 mm.The antenna has a surface area of 4.8 × 4.1 cm2and a total height of 5.1 mm. The designed antenna covers two wireless bands from 2.39 to 2.64GHz and 3.39–3.76 GHZ with impedance bandwidths (VSWR < 2) of 250 MHz (9% bandwidth centered at 2.515 GHz) and 370 MHz (10% bandwidth centered at 3.57 GHz), respectively. This antenna is capable of covering IEEE 802.11b/g/n standards of WLAN from 2.4 to 2.485 GHz, bluetooth applications from 2.4 to 2.483 GHz, ZigBee applications from 2.4 to 2.485 GHz, IEEE 802.16/ Wi-MaX applications from 3.4 to 3.69 GHz and international mobile telecommunications (IMT) band from 3.4 to 3.6 GHz. As the antenna is circularly polarized, the misalignment of the receiver with transmitter does not affect the performance of the system. The antenna designing was done using CST MWS V'10 and the prototype of the designed antenna was tested for the validation of S11(dB) and gain results against the simulated ones experimentally. The proposed antenna shows a gain of 4.08 dBi at 2.5 GHz and a gain of 5.024 dBi at 3.51 GHz.


1998 ◽  
Vol 511 ◽  
Author(s):  
T. E. Huber ◽  
Leo Silber ◽  
Frank Boccuzzi

ABSTRACTGlass Capillary Arrays (GCA) are low density columnar monolithic structures made of soda-lime glass. This structure, in which 76% of volume between the columns, the channels, is void, also has a greatly reduced dielectric constant in comparison with bulk glass. We have measured the index of refraction and absorption of samples of GCA's in the X-band, 8 × 109 Hz to 1.2×1010 Hz, for various orientations of the channels with respect to the polarization. For channels perpendicular to the polarization direction we have measured an index of refraction of 1.15. In comparison the index of refraction of (bulk) soda-lime glass is 2.6. We also examined the absorption in the far-infrared (FIR) frequency range between 6×1011 Hz and 6×1012 Hz. In this frequency range we obtain a k2 dependence due to losses in the glass matrix at higher frequencies. The results of the X-band and FIR results are interpreted in terms of an effective medium theory of the real and imaginary part of the dielectric constant of the composite.


2014 ◽  
Vol 2 (3) ◽  
pp. 51 ◽  
Author(s):  
A. Kandwal ◽  
R. Sharma ◽  
S. K. Khah

A novel gap coupled dual band multiple ring antenna with a defected ground structure (DGS) has been successfully implemented. A different technique is used in this communication where both gap coupling and defected ground are applied to obtain better results for wireless applications. The designed antenna operates in two different frequency bands. The antenna shows a wideband in C-band and also resonates in the X-band. The main parameters like return loss, impedance bandwidth, radiation pattern and gain are presented and discussed. The gain is increased and the side lobe level is considerably reduced to a good extent. Designed antenna is tested and the results show that the simulation and experimental results are in good agreement with each other.


Author(s):  
M.M. Gajibo ◽  
M. K. A. Rahim ◽  
N. A. Murad ◽  
O. Ayop ◽  
H.A. Majid ◽  
...  

<span>A metamaterial structure capable of operating as a wide band absorber as well as an AMC reflector is presented in this report. A microstrip patch copper was used as a switch to switch between the two modes. An FR4 substrate was used and the incidental wave angles were varied from 0<sup>0</sup> to 60<sup>0</sup>. Simulations results showed that the absorber was able achieve 96% absorption at 13.05 GHz and 100% absorption at 10.00 GHz and 12.00 GHz. Furthermore, it archived over 85% absorption for the entire X-band frequency range. The AMC reflector also was able to achieve 84.97%, 82.88% and 78.69% for incident angles 0<sup>0</sup>, 20<sup>0 </sup>and 40<sup>0</sup> respectively. Unfortunately, the structure is polarization sensitive.</span>


Sign in / Sign up

Export Citation Format

Share Document