“Design and Analysis of Flywheel for Shape Optimization”

Author(s):  
Mr. Balasaheb S. Rathod ◽  
Prof. Satish M. Rajmane

A flywheel is essentially a very heavy wheel that takes a lot of force to spin around .the shape of the flywheel plays an important role in storing capacity as well as to minimize the fluctuations of shaft .Flywheels are often used to provide continuous energy in system. And act as a reservoir by storing the energy. The parameters which affect the flywheel are material strength, geometry, and rotational speed .optimizing a flywheel means providing a framework for optimizing structures described by various possible physical or mechanical models .optimization helps to minimize the cost of the flywheel. Flywheel having efficient design maximizes the life and assures high reliability .This flywheel finds applications in punching press, sewing machine, I.C. engines ,pumps etc. the various shape for flywheel design are solid, rim, web and arm type flywheel in which stress variation is observed for various shape and size and optimizing the shape. Optimized design helps in reducing material failure occurrence due to high stresses, cost improvement. Geometry of the flywheel has a effect on specific energy.

2020 ◽  
Vol 39 (3) ◽  
pp. 3259-3273
Author(s):  
Nasser Shahsavari-Pour ◽  
Najmeh Bahram-Pour ◽  
Mojde Kazemi

The location-routing problem is a research area that simultaneously solves location-allocation and vehicle routing issues. It is critical to delivering emergency goods to customers with high reliability. In this paper, reliability in location and routing problems was considered as the probability of failure in depots, vehicles, and routs. The problem has two objectives, minimizing the cost and maximizing the reliability, the latter expressed by minimizing the expected cost of failure. First, a mathematical model of the problem was presented and due to its NP-hard nature, it was solved by a meta-heuristic approach using a NSGA-II algorithm and a discrete multi-objective firefly algorithm. The efficiency of these algorithms was studied through a complete set of examples and it was found that the multi-objective discrete firefly algorithm has a better Diversification Metric (DM) index; the Mean Ideal Distance (MID) and Spacing Metric (SM) indexes are only suitable for small to medium problems, losing their effectiveness for big problems.


Author(s):  
Michael Woo ◽  
Marcos Campos ◽  
Luigi Aranda

Abstract A component failure has the potential to significantly impact the cost, manufacturing schedule, and/or the perceived reliability of a system, especially if the root cause of the failure is not known. A failure analysis is often key to mitigating the effects of a componentlevel failure to a customer or a system; minimizing schedule slips, minimizing related accrued costs to the customer, and allowing for the completion of the system with confidence that the reliability of the product had not been compromised. This case study will show how a detailed and systemic failure analysis was able to determine the exact cause of failure of a multiplexer in a high-reliability system, which allowed the manufacturer to confidently proceed with production knowing that the failure was not a systemic issue, but rather that it was a random “one time” event.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4566
Author(s):  
Minsoo Choi ◽  
Wongwan Jung ◽  
Sanghyuk Lee ◽  
Taehwan Joung ◽  
Daejun Chang

This study analyzes the thermodynamic, economic, and regulatory aspects of boil-off hydrogen (BOH) in liquid hydrogen (LH2) carriers that can be re-liquefied using a proposed re-liquefaction system or used as fuel in a fuel cell stack. Five LH2 carriers sailing between two designated ports are considered in a case study. The specific energy consumption of the proposed re-liquefaction system varies from 8.22 to 10.80 kWh/kg as the re-liquefaction-to-generation fraction (R/G fraction) is varied. The economic evaluation results show that the cost of re-liquefaction decreases as the re-liquefied flow rate increases and converges to 1.5 $/kg at an adequately large flow rate. Three energy efficient design index (EEDI) candidates are proposed to determine feasible R/G fractions: an EEDI equivalent to that of LNG carriers, an EEDI that considers the energy density of LH2, and no EEDI restrictions. The first EEDI candidate is so strict that the majority of the BOH should be used as fuel. In the case of the second EEDI candidate, the permittable R/G fraction is between 25% and 33%. If the EEDI is not applied for LH2 carriers, as in the third candidate, the specific life-cycle cost decreases to 67% compared with the first EEDI regulation.


Author(s):  
Irfan Uddin

The microthreaded many-core architecture is comprised of multiple clusters of fine-grained multi-threaded cores. The management of concurrency is supported in the instruction set architecture of the cores and the computational work in application is asynchronously delegated to different clusters of cores, where the cluster is allocated dynamically. Computer architects are always interested in analyzing the complex interaction amongst the dynamically allocated resources. Generally a detailed simulation with a cycle-accurate simulation of the execution time is used. However, the cycle-accurate simulator for the microthreaded architecture executes at the rate of 100,000 instructions per second, divided over the number of simulated cores. This means that the evaluation of a complex application executing on a contemporary multi-core machine can be very slow. To perform efficient design space exploration we present a co-simulation environment, where the detailed execution of instructions in the pipeline of microthreaded cores and the interactions amongst the hardware components are abstracted. We present the evaluation of the high-level simulation framework against the cycle-accurate simulation framework. The results show that the high-level simulator is faster and less complicated than the cycle-accurate simulator but with the cost of losing accuracy.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3079 ◽  
Author(s):  
Leopoldo Angrisani ◽  
Francesco Bonavolontà ◽  
Annalisa Liccardo ◽  
Rosario Schiano Lo Moriello

In this paper, a logic selectivity system based on Long Range (LoRa) technology for the protection of medium-voltage (MV) networks is proposed. The development of relays that communicate with each other using LoRa allows for the combination of the cost-effectiveness and ease of installation of wireless networks with long-range coverage and reliability. The realized demonstrator to assess the proposed system is also presented in the paper; based on different types of faults and different locations, the times needed for clearing a fault and restoring the network were estimated from repeated experiments. The obtained results confirm that, with an optimized design of transmitted packets and of protocol characteristics, LoRa communication grants fault management that meets the criteria of logic selectivity, with fault isolation occurring within the maximum allowed time.


2001 ◽  
Vol 38 (04) ◽  
pp. 219-232
Author(s):  
B. J. Rosello ◽  
A. N. Perakis

The ability to transport containers with the least cost at currently required service speeds of approximately 25 knots to maintain a regular operating schedule is the goal of every post-panamax containership operator. The desire to carry more containers is driven by several economies of scale and their implications, which allow for significant savings. A single-screw containership, the Suez Max SS, is designed and evaluated against existing designs that include the P & O Nedlloyd Southhampton, Maersk S-Class, and the twin-screw Suez Max, which is a concept vessel. The containerships are compared using several different ratios and a cost per 20-ft equivalent unit (TEU) evaluation. The design of the Suez Max SS was built to the maximum draft currently allowed by the Suez Canal Authority. An initial stability analysis is performed that utilizes five different container loading conditions. A cost analysis that involves capital, operating, port, and fuel costs and Suez Canal fees is also completed. The four vessels are evaluated on a round-trip schedule between the ports of Rotterdam and Singapore with the same voyage characteristics and conditions. The Suez Max SS is found to be a more economical design with savings of approximately 25% over the existing vessels and a 15% savings over the concept vessel evaluated in the cost analysis. The Suez Max SS utilizes its economies of scale and the advantages of a two-port schedule that allow it to be such a cost-efficient design.


2019 ◽  
Vol 118 ◽  
pp. 02068
Author(s):  
Haiwen Wang ◽  
Daoyuan Wen ◽  
Qunyin Gu ◽  
Fangqin Li ◽  
Weijun Gao ◽  
...  

The power consumption of industrial enterprises is characterized by large power consumption and high reliability requirement, so the cost of electricity consumption is relatively high. Distributed photovoltaic power generation is clean and environmentally friendly, making full use of the roof area to generate electricity. Based on the characteristics of distributed photovoltaic and energy storage, this paper constructs the distributed optical storage model and operation strategy. In addition, this paper takes an industry as an example to carry out relevant verification and analysis.


2020 ◽  
Vol 1004 ◽  
pp. 776-782
Author(s):  
Kosuke Uchida ◽  
Toru Hiyoshi ◽  
Yu Saito ◽  
Hiroshi Egusa ◽  
Tatsushi Kaneda ◽  
...  

1200 V / 200 A V-groove trench MOSFET optimized to achieve low power loss, high oxide reliability under a drain bias condition and high avalanche ruggedness is shown in this paper. We revealed a relationship between the lifetime under a high temperature reverse bias condition and the oxide electric field. In accordance with the results of the test, the 1200 V / 200 A trench MOSFET showed an improvement in the tradeoff between the on-resistance and oxide electric field with the presence of current spreading layers. In order to obtain low on-resistance and high avalanche ruggedness at the same time, buried guard ring structures, which made the blocking voltage of the edge termination area higher than that of the active area, was developed. The fabricated MOSFETs demonstrated a low specific on-resistance of 3.1 mΩ cm2. A predicted lifetime of 200 years under a high temperature drain bias condition of 1200 V was achieved by the optimized design. A short circuit withstand time of 6 μs and a high avalanche energy of 7.8 J/cm2 were shown.


Author(s):  
R. David Gerke ◽  
Andrew A. Shapiro ◽  
Shri Agawal ◽  
David M. Peters ◽  
Michael A. Sandor

Commercial-off-the-shelf (COTS) plastic encapsulated microcircuits (PEM) are candidate-packaging technologies for spacecraft due to their enhanced performance, lower weight and lower cost. Much of the electronics used in space applications would be considered obsolete by everyday standards. This is primarily due the cost and time required for full space qualification. In order to gain the performance available in today’s electronics, COTS PEMs offer a viable path. PEMs can weigh half as much as their counter part ceramic packages. A lighter package results in a smaller overall payload for the same board functionality, a concern of critical importance for space missions because the payload mass dictates the launch vehicle requirements. Costs can be potentially reduced by using screening, accelerated testing or partial qualification techniques to complement the existing commercial qualification as well as by the reduced package materials costs. Assessing the risk associated with potentially lower reliability devices, engineers within the commercial and aerospace industries are using trade-off and risk analysis to aid in reducing spacecraft system cost while increasing performance and maintaining high reliability. In this paper we will outline the issues facing the use of COTS PEMs for spaceflight hardware from the aspect of both the electronic active devices as well as their packages. Finally, we will provide some guidelines for their use.


Author(s):  
Xianjie Yang ◽  
Sayed A. Nassar ◽  
Zhijun Wu

This paper investigates the clamp load loss in threaded fittings with a collapsible metal gasket for elevated temperature application. Firstly, the joint is tested at room temperature to find the correlation between the joint clamp load, the tightening torque, and the angle of turn. Secondly, a mathematical model for clamp load loss of the bolted joints under temperature cycling is proposed for predicting the clamp load variation. Although the bolt and the joint would normally undergo linear elastic deformation at room temperature, they are more likely to exhibit nonlinear behavior at high temperature due to the reduced material strength. The plastic or creep deformation of the bolt, gasket, and joint would cause permanent clamp load loss that may lead to joint leakage, part separation, or plastic thread deformation that would significantly increase the cost of fitting replacement and/or maintenance. A non-linear finite element model is used with temperature dependent material properties. The FEA model is used to investigate the clamp load loss of the threaded fittings due to plastic and creep behavior. Some measures for enhancing the threaded fitting reliability at elevated temperature are proposed.


Sign in / Sign up

Export Citation Format

Share Document