scholarly journals Effective cation-exchange capacity in Finnish mineral soils

1971 ◽  
Vol 43 (3) ◽  
pp. 178-186
Author(s):  
Armi Kaila

Effective CEC of 230 mineral soil samples was estimated as sum of (Ca + Mg) and (AI + H) displaced by N KCI. The mean values as me/100 g of soil were, in the surface samples, 15.9 ± 2.0 in 46 clay soils, 8.9 ± 1.3 in 21 silt and loam soils, and 8.3 ± 1.1 in 39 sandy soils. In samples from the deeper layers the corresponding means were 16.3 ± 2.3 in 54 clay soils, 5.6 ± 0.9 in 21 silt and loam soils, and 2.5 ± 0.5 in 49 sandy soils. In surface samples of clay soils the mean effective CEC was about two thirds, in sandy soils of deeper layers about one third, and in all other groups about one half of the corresponding average potential CEC determined by neutral ammonium acetate. In the total material in which clay content ranged from 0 to 95%, organic C from 0.1 to 8.7 %, soil pH from 3.3 to 7.5, and oxalate soluble Al from 1.4 to 47.9 mmol/100 g, the »effective CEC» depended mostly on clay content: the partial correlation coefficient r = 0.90***, and the standard partial regression coefficient β = 0.84. The corresponding coefficients for the relationship between the »effective CEC» and the content of organic C were r = 0.55*** and β = 0.29, soil pH r = 0.35*** and β = 0.16, and oxalate soluble Al r = –0.13 and β = –0.06. The positive effect of liming on effective CEC, particularly, in coarser textured acid soils high in organic matter was emphasized.

1971 ◽  
Vol 43 (1) ◽  
pp. 11-19
Author(s):  
Armi Kaila

In the present study an attempt was made to study by statistical methods the proportion of Al of the exchange acidity of 298 soil samples of various kind, and to what extent the titratable nonexchangeable acidity in these soils is connected with Al, when Al soluble in Tamm’s acid oxalate was used as its indicator. Unbuffered N KCI replaced Al only from soil samples with a pH less than 5.3 in 0.01 M CaCl2 . In this part of the material, Al corresponded, on the average, to one third of the exchange acidity of mineral soil samples, and to 16 per cent of that of organic soils. The amount of Al was usually the higher the lower the soil pH, but the correlation was close only in the group of clay soils. Titratable nonexchangeable acidity was estimated as the difference of the amount of acidity neutralized at pH 8.2 and the corresponding amount of exchange acidity replaced by unbuffered KCI. In 100 clay soil samples it was, on the average, 12.0 ± 1.3 me/100 g, in 42 samples of silt and loam soils 8.8 ± 1.8 me/100 g, in 99 sandy soils 8.9 ± 1.1 me/100 g and in 57 organic soils 49.1 ± 6.8 me/100 g. There was no correlation between titratable nonexchangeable acidity and the clay content within various soil groups. In the clay soils exalate soluble Al alone explained 78.3 %, in the silt and loam soils 59.8 %, in the sandy soils 6.5 %, and in the organic soils 0.6 % of the variation in titratable nonexchangeable acidity. Taking into account the content of organic C increased the rate of explanation only to 82.1 % in clay soils, to 84.1 % in silt and loam soils, to 83,1 % in sandy soils, and to 63.7 % in the organic soils. Further, adding the soil pH increased the rate of explanation 5.8 to 9.6 per cent units in various soil groups, but considering of oxalate soluble Fe did no more distinctly increase the part of variation explained, except in the organic soils. Regression equations were calculated for the relationship of these variables. According to the partial correlation coefficients and to the β-coefficients, the relative importance of oxalate soluble Al in explaining the variation in titratable nonexchangeable acidity was in the clay soils higher than even that of organic C content, but in the other mineral soil groups it was less important than both C content and pH; in the organic soils even oxalate soluble Fe appeared to be slightly more important.


1967 ◽  
Vol 39 (2) ◽  
pp. 107-118
Author(s):  
Armi Kaila

Release of nonexchangeable potassium by treatment with 1 N HCI at 50°C was studied on basis of a material consisting of 330 samples of Finnish mineral soils. The results ranged from 1 to 830mg K/100g. The mean content of nonexchangeable acid-soluble potassium was in the surface samples of sand and fine sand soils 95±26 mg/100 g, in loam soils 165±31 mg/100 g, in silt soils 195±52 mg/100 g, in clay loam soils 258±32 mg/100 g, in silty clay soils 283±43 mg/100 g, and in heavy clay soils 345±126 mg/100 g. In the subsoil samples of loam, clay loam, silty clay and heavy clay soils the mean content was significantly higher than in the surface samples, or 283±51 mg/100 g, 404±56 mg/100 g, 535±53 mg/100 g, and 580±37 mg/100 g, respectively. The results seem to be high as compared with data reported from Sweden, Norway and Germany. The content of nonexchangeable potassium released by acid was to some extent connected with the clay content: the correlation coefficient in the whole material was r = 0.74***, but only about 0.5*** both in the separate groups of the 178 nonclay samples and the 152 clay samples. There was only a very low correlation between the contents of nonexchangeable acid-soluble potassium and readily exchangeable potassium. A somewhat higher correlation, r = 0.65***, was found for the relationship between the former and fixation of added potassium under »wet» conditions, but it was markedly decreased by the elimination of the effect of the clay content. Nonexchangeable acid-soluble potassium usually represented a lower part of the total potassium in the surface samples than in the subsoil samples, and also the proportion tended to be higher in the clay soils than in the coarser soils. It varied from 0.2 to 26.3 per cent in the small material studied. In most cultivated soils less nonexchangeable potassium was released from the samples of plough layer than from samples of deeper layers. In a podsol profile the minimum content of nonexchangeable and exchangeable potassium and the maximum of fixation of added potassium was found in the A2 horizon; in a brown podsolic soil all these test values decreased fairly regularly with depth. From some silt and silty clay soils incubated for three months at room temperature a large part, even more than 40 per cent of the added potassium was not recovered by the acid extraction. Ammonium acetate extracted from 9 to 85 per cent of the potassium applied before incubation, and the part of added potassium found as nonexchangeable acid-soluble form varied from 5 to 53 per cent. The equilibrium between the different potassium fractions in soil was discussed. It was supposed that differences in the ability of plants to utilize nonexchangeable potassium may partly depend on the level to which plant roots are able to decrease potassium concentration in the solution around the minerals.


1986 ◽  
Vol 58 (2) ◽  
pp. 43-46
Author(s):  
Helinä Hartikainen

The base-neutralizing capacity, BMC7 (OH- as meq kg-1 needed to raise soil pH to 7), was determined graphically from curves obtained in KOH titration (at a constant ionic strength of I = 0.1). In 84 soil samples, BMC7 amounted to 0—316 meq kg-1, being highest in the heavy clay soils and lowest in the non-clay soils. In different textural groups, BMC7 seemed most markedly to be dependent on the initial soil pH, followed by organic C or oxalate soluble Al, in the coarser clays also on clay content. The results evidence that in determination of lime requirement, attention should be paid to the capacity of soil acidity. In routine soil testing, detailed lime recommendations for various soil types are needed.


2021 ◽  
Author(s):  
Steffen A. Schweizer ◽  
Carsten W. Mueller ◽  
Carmen Höschen ◽  
Pavel Ivanov ◽  
Ingrid Kögel-Knabner

AbstractCorrelations between organic carbon (OC) and fine mineral particles corroborate the important role of the abundance of soil minerals with reactive surfaces to bind and increase the persistence of organic matter (OM). The storage of OM broadly consists of particulate and mineral-associated forms. Correlative studies on the impact of fine mineral soil particles on OM storage mostly combined data from differing sites potentially confounded by other environmental factors. Here, we analyzed OM storage in a soil clay content gradient of 5–37% with similar farm management and mineral composition. Throughout the clay gradient, soils contained 14 mg OC g−1 on average in the bulk soil without showing any systematic increase. Density fractionation revealed that a greater proportion of OC was stored as occluded particulate OM in the high clay soils (18–37% clay). In low clay soils (5–18% clay), the fine mineral-associated fractions had up to two times higher OC contents than high clay soils. Specific surface area measurements revealed that more mineral-associated OM was related to higher OC loading. This suggests that there is a potentially thicker accrual of more OM at the same mineral surface area within fine fractions of the low clay soils. With increasing clay content, OM storage forms contained more particulate OC and mineral-associated OC with a lower surface loading. This implies that fine mineral-associated OC storage in the studied agricultural soils was driven by thicker accrual of OM and decoupled from clay content limitations.


1989 ◽  
Vol 6 (1) ◽  
pp. 23-26 ◽  
Author(s):  
Andrew M. Gordon ◽  
Peter A. Williams ◽  
Edward P. Taylor

Abstract Four dominant or codominant Norway spruce trees from each of 55 sites were destructively sampled and the annual height growth determined by stem analysis. The sampled sites were stratified by soil textural class (coarse, medium, and fine) and depth to distinct mottling (0-16, 16-40, and 40 in.). Two sets of an-amorphic site index curves were constructed using a total age of 30 years (SI30), and breast height age of 25 years (SIBH25) as base ages. The mean SI30 from Ontario (53 ft) was found to be 17.8% higher than the mean values published from Vermont (45 ft) and currently used in Ontario. SIBH25 values had a range of 34.6 to 74.8 ft with a mean of 55.3 ft. Analysis of variance showed significant differences in SIBH25 due to soil texture and drainage class, and in years to breast height (BH) due to drainage class. SIBH25 was highest on sites with loamy soils and distinct mottling at 16-40 in. It took an average of 6.5 years for seedlings to reach BH with a range of 3 to 12 years. Years to BH was lowest on sites with sandy soils and those with distinct mottling below 40 in. North. J. Appl. For. 6(1):23-26, March 1989.


1965 ◽  
Vol 37 (2) ◽  
pp. 148-161
Author(s):  
Ulla Marttila

An attempt was made to study the cation exchange capacity, the percentage base saturation and the amounts of the most common cations in the different types and depths of the Finnish soils on the basis of a material of 100 soil samples from various parts of the country. The exchangeable cations were leached from the soil with neutral 1N ammonium acetate. Calcium, magnesium, potassium, sodium and hydrogen were determined and the exchange capacity was calculated as the sum of all these cations. In the different soil types the mean values of the CEC were the following: organic soils 92.1 me per 100 g of soil, non-Litorina clays 28.9 », Litorina clays 27.9 », loam and silt soils 16.9 », sand and fine sand soils 14.5 ». The highest values of the percentage base saturation, on an average 85 % were obtained in the Glacial clay soils and the lowest ones in the organic soils, 34%, and in the Litorina clay soils, 36 %. BS % was generally greater in the deeper than in the surface layers. The contents of clay (


2007 ◽  
Vol 37 (6) ◽  
pp. 1118-1133 ◽  
Author(s):  
Rock Ouimet ◽  
Sylvie Tremblay ◽  
Catherine Périé ◽  
Guy Prégent

We assessed the organic C stocks and inferred their changes in vegetation biomass, forest floor, and soil using a 50 year chronosequence of red pine ( Pinus resinosa Ait.) plantations established on postagricultural fields in southern Quebec, Canada. The data come from soil and tree field surveys carried out in the 1970s in 348 sites. Organic C concentrations were usually measured in three major mineral soil horizons; for the remaining soil horizons, they were estimated using pedotransfer functions. The effect of soil order, drainage, and texture was analysed. Over 22 years, organic C accumulation rates (Mg C·ha–1·year–1) were 1.66 ± 0.03 in vegetation biomass, 0.56 ± 0.07 in forest floor, 0.86 ± 0.47 in loamy soils (0–100 cm), and  –0.18 ± 0.24 in sandy soils (0–100 cm). The greater rate of C accumulation in loamy soils was due to the contribution of the 30–100 cm subsoil layer. The overall net accumulation of organic C in these plantation ecosystems was estimated to 51.4 ± 4.8 Mg C·ha–1 at 22 years. Soils of these plantations acted as a C sink in the first two decades, particularly in loamy soils compared with sandy soils, with no major differences among soil order or drainage.


Forests ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 739 ◽  
Author(s):  
Thomas Coates ◽  
Donald Hagan ◽  
Wallace Aust ◽  
Andrew Johnson ◽  
John Keen ◽  
...  

Recent studies suggest increased fire frequency may impair soil chemistry, but few studies have examined long-term effects of repeated, frequent prescribed fires on forest soil properties in the southeastern Coastal Plain, USA. In this study, forest soil chemistry at the 0–10 and 10–20 cm mineral soil depths of sandy surface horizons (Entisols and Spodosols) were compared among units burned 0, 4, 6, and 8 times between 2004 and 2015 and 0 and 20 times between 1978 and 2015 in a longleaf (Pinus palustris Mill.)–loblolly (Pinus taeda L.) pine savanna at the Tom Yawkey Wildlife Center (Georgetown, SC, USA). At the 0–10 cm soil depth, soil pH (p = 0.00), sulfur (p = 0.01), calcium (p = 0.01), iron (p < 0.01), manganese (p < 0.01), and aluminum (p = 0.02) treatment means differed (2004–2015). Calcium and manganese displayed positive, significant relationships and sulfur displayed a negative, significant relationship with increasing fire frequency (p < 0.05). However, correlation of these relationships was low (r2 ≤ 0.23). Using linear contrasts to compare the mean of all fire treatments (20 fires from 1978 to 2015) to the mean of the unburned compartment, sulfur (p = 0.01) and iron (p < 0.01) were less in soils from the burned compartments. At the 10–20 cm soil depth, soil pH (p = 0.01), manganese (p = 0.04), phosphorus (p = 0.01), potassium (p = 0.02), and iron (p < 0.01) treatment means differed (2004–2015). Potassium displayed a negative, significant relationship and soil pH displayed a positive, significant relationship with increasing fire frequency (p < 0.05). Correlation of these relationships was low (r2 ≤ 0.16), however. Using linear contrasts to compare the mean of all fire treatments (20 fires from 1978 to 2015) to the unburned compartment, potassium (p = 0.00) and iron (p < 0.01) were less in soils from burned compartments. These results are inconsistent with studies suggesting that forest soil chemistry is substantially altered by increased fire frequency and support other studies from this region that have documented minimal or temporary soil chemical changes associated with frequent prescribed fires.


1962 ◽  
Vol 34 (1) ◽  
pp. 107-114
Author(s):  
Armi Kaila

The ammonium fixing capacity of Finnish soils was studied by analysing a material of 139 samples from surface soils and 127 samples of deeper layers collected mainly from cultivated soils from various parts of the country. The pH-values of these samples measured in 0.02 N CaCl2-suspension ranged from 3.3 to 7.5, the content of organic C from 0 to 10.1 per cent, and the content of clay (< 2 μ) from 0 to 96 per cent. The ammonium fixing capacity was determined under moist conditions by treating the samples for 24 hours with N NH4CI solution corresponding to 1000 m.e. of NH4-N per 100 g of soil, and removing the easily exchangeable ions by washing with CaCl2 -solutions. The difference in the nitrogen content of treated and untreated samples determined by digesting in concentrated sulfuric acid, was taken to indicate the amount fixed under these conditions. The results varied from 0 to 4.0 m.e./100 g of soil in the surface samples, and from 0 to 15.9 m.e./100 g of the soils from the deeper layers. The corresponding mean values were 1.0 and 3.8 m.e. per 100 g of soil, respectively. The association of the ammonium fixing capacity (1) with the clay content (2), pH (3), and the content of organic C (4) of the samples could be characterized by the following partial linear correlation coefficients; r12;34 = 0.472*** r13;24 = 0.177 r14;23 = –0.313** The total linear correlation coefficient between the ammonium fixing capacity and the fixation of potassium under moist conditions (2.5 m.e. of K added to 100 g of soil) was r = 0.829***. No correlation existed between the ammonium fixing capacity and the content of exchangeable potassium in these samples. Some of the results point to the possibility that in certain soils the coarser fractions, from 2 to 6 μ, or even from 6 to 20 μ, may play an important role in the fixing of ammonium in difficultly exchangeable form. In spite of the fact that under laboratory conditions the ammonium fixing capacity of Finnish soils may be fairly high, even in the surface soils, the conclusion was drawn that usually under the field conditions, the fixation of ammonium ions in difficultly exchangeable form might not reduce the effect of ammonium nitrogen fertilizers to any marked degree.


Soil Research ◽  
1994 ◽  
Vol 32 (6) ◽  
pp. 1369 ◽  
Author(s):  
RJ Harper ◽  
RJ Gilkes

The utility of the caesium-137 (137Cs) technique, for estimating the effects of wind erosion, was evaluated on the soils of a semi-arid agricultural area near Jerramungup, Western Australia. The past incidence of wind erosion was estimated from field observations of soil profile morphology and an existing remote sensing study. Erosion was limited to sandy surfaced soils (0-4% clay), with a highly significant difference (P < 0.0001) in 137Cs values between eroded and non-eroded sandy soils, with mean values of 243 � 17 and 386 � 13 Bq m-2 respectively. Non-eroded soils, with larger clay contents, had a mean 137Cs scontent of 421 � 26 Bq m-2, however, due to considerable variation between replicate samples, this value was not significantly different from that of the non-eroded sands. Hence, although the technique discriminates between eroded and non-eroded areas, the large variation in 137Cs values means that from 27 to 96 replicate samples are required to provide statistically valid estimates of 137Cs loss. The occurrence of around 18% of the total 137Cs between 10 and 20 cm depth in these soils, despite cultivation being confined to the surface 9 cm, suggests that leaching of 137Cs occurs in the sandy soils, although there was no relationship between clay content and 137Cs value for either eroded or non-eroded soils. In a multiple linear regression, organic carbon content and the mean grain size of the eroded soils explained 35% of the variation in 137Cs content. This relationship suggests that both organic carbon and 137Cs are removed by erosion, with erosion being more prevalent on soils with a finer sand fraction. Clay and silt contents do not vary with depth in the near-surface horizons of the eroded sandy soils, hence it is likely that wind erosion strips the entire surface horizon with its 137Cscontent, rather than selectively winnowing fine material.


Sign in / Sign up

Export Citation Format

Share Document