scholarly journals The degradation and utilization of formaldehyde-treated urea by rumen microbes in vitro

1982 ◽  
Vol 54 (1) ◽  
pp. 15-24
Author(s):  
Jouko Setälä ◽  
Liisa Syrjälä-Qvist

Urea was treated with different levels of formaldehyde (HCHO). The HCHO percentages, on a weight basis, were 0(F0), 0.25 (F0.25) 0.50 (F0.50), 0.75 (F0.75), 1.0 (F1.0), 1.5 (F1.5), 2.0 (F2.0), 3.0 (F3.0) and 5.0(F5.0). Twenty milligrams of urea was incubated for 5 hours in 40 ml of sheep rumen fluid-buffer solution (1:1) together with 1.5 grams of substrate. The substrate consisted of vacuum-dried and milled feeds: barley (25 %), molassed beet pulp (25 %) and NaOH-treated straw (50 %). The feeds and urea were used in the same proportions as in the diet of the sheep which yielded the rumen fluid for incubation. Treatment with HCHO decreased hydrolysis of urea to ammonia. The ammonia concentration in contents offer mentors 2 hours after the start of incubation had a highly significant (P < 0.001) negative correlation (r = -0.976, n = 72) with the HCHO treatment level. Microbial protein synthesis was calculated from tungstic acid - sulphuric acid precipitation. Synthesis of protein, expressed as grams of nitrogen per 100 grams fermented organic matter was highest when F1.5-F3.0 urea was used. Treatment with more than 3 % of HCHO decreased the number of protozoa and the general activity of the microbes, thus decreasing fermentation of organic matter and lowering the yield of microbial protein. When F1.5 urea was used, the total yield (mg protein/hr) was significantly higher than with untreated urea, but the results obtained with F1.5 urea did not differ significantly from those with F0.75 or F2.0 urea.

2002 ◽  
Vol 82 (2) ◽  
pp. 233-239 ◽  
Author(s):  
A. Machmüller ◽  
C. R. Soliva ◽  
M. Kreuzer

The effect of Ca supplementation on the methane-suppressing effect of lauric acid was investigated in an experiment based on a 2 × 2-factorial arrangement using the in vitro system Rusitec. Additional Ca was supplemented at 1 g kg-1 diet in the form of compounds of relatively low solubility in rumen fluid. Lauric acid (C12:0), the predominant effective medium-chain fatty acid in coconut oil, was added at a level of 50 g kg-1. Adding C12:0 did not affect bacterial count, but eliminated ciliate protozoa from fermenters. Ammonia concentration in fermentation mixture declined and volatile fatty acid pattern changed with C12:0. The apparent degradation rate of total organic matter was not altered by C12:0, but fiber fermentation was depressed (P < 0.001). Effects of Ca on microbial counts and fermentation characteristics remained low. Without additional Ca, C12:0 reduced the average daily methane release (mmol g-1 organic matter degraded) by 76%. In comparison, C12:0 only reduced methane production by 47% when additional Ca was included in the diet (interaction of C12:0 and Ca, P < 0.05). The present results suggest that the dietary content of soap-forming Ca has to be kept low in order to achieve a high methane-suppressing effect of lauric acid. Key words: Methane, lauric acid, lipids, calcium, Rusitec, ruminants


2022 ◽  
Vol 951 (1) ◽  
pp. 012004
Author(s):  
S Nayohan ◽  
K G Wiryawan ◽  
A Jayanegara

Abstract The aim of this study was to determine the effect of coating urea by chitosan at graded levels on ammonia concentration and rumen fermentation in vitro. This study used Factorial Randomized Complete Block Design (RCBD) to test ammonia parameter and Randomized Complete Block Design (RCBD) for pH, microbial protein synthesis, dry matter and organic matter digestibility, and Volatile Fatty Acid (VFA). The treatments tested were: P0 = addition non coating urea 1%; P1 = coating urea by chitosan 1%; P2 = coating urea by chitosan 2%; P3 = coating urea by chitosan 3%. The data obtained were analysed by using ANOVA and continued with Tukey HSD test with SPSS version 25. The results of this study showed that the coating of urea chitosan had no significant effect on pH, dry matter and organic matter digestibility, microbial protein synthesis, and amonia concentration in the rumen. However, it significantly reduced (P <0.05) total VFA concentration. It can be concluded that the application of urea coating by chitosan does not affect on the degradation of urea in the rumen.


1974 ◽  
Vol 32 (2) ◽  
pp. 199-208 ◽  
Author(s):  
L. D Satter ◽  
L. L Slyter

1. The effect of ammonia concentration on microbial protein production was determined in continuous-culture fermentors charged with ruminal contents obtained from steers fed on either a protein-free purified diet, a maize-based all-concentrate diet, or a forage–concentrate (23:77) diet. Urea was infused into the fermentors to maintain various concentrations of ammonia in the incubating mixtures.2. Under nitrogen-limiting conditions, microbial protein yield measured as tungstic acid-precipitable N (TAPN) increased linearly with supplementary urea until ammonia started to accumulate in the incubating ingesta. Increasing the ammonia concentration beyond 50 mg NH3-N/l had no effect on microbial protein production.3. The molar proportions of volatile acids produced were not affected by the level of urea supplementation. Total acid production was decreased slightly under N-limiting conditions, but not to the same extent as microbial protein production.4. Estimated yield of microbial dry matter/mol ATP produced averaged 15·6 when non-limiting N as urea was provided with the purified diet.5. These results suggest that addition of non-protein N supplements to ruminant rations are warranted only if the prevailing concentration of ruminal ammonia is less than 50 mg NH3-N/l ruminal fluid.


2005 ◽  
Vol 56 (8) ◽  
pp. 803 ◽  
Author(s):  
C. Sar ◽  
B. Mwenya ◽  
B. Pen ◽  
R. Morikawa ◽  
K. Takaura ◽  
...  

The suppressing effects of different concentrations of nitrate (0, 5, 10, 15, and 20 mm) or nisin (0, 5, 10, 15, 20, and 30 μmol/L) on in vitro methane production were examined with mixed rumen microbes using the in vitro continuous incubation system. The effects of different concentrations of nisin (10, 20, and 30 μmol/L) on in vitro nitrate/nitrite reduction were examined for methane suppression without any nitrate toxicity. The culture mixture consisted of 400 mL of strained rumen fluid from 2 non-lactating Holstein cows fed a diet of oaten hay, alfalfa hay cube, and concentrates (35 : 35 : 30) at maintenance level, and 400 mL of autoclaved buffer solution. Methane production was decreased with increasing levels of nitrate. As the concentration of nisin increased from 5 to 30 μmol/L, methane production was decreased by 14–40%. A decrease in acetate to propionate ratio and increase in total volatile fatty acids were observed as the concentration of nisin increased. Toxic nitrite accumulation was unaffected by increasing levels of nisin. In conclusion, nisin improved some of the parameters of ruminal fermentation and inhibited methane production, but did not decrease nitrate toxicity when nitrate was used to inhibit methane production.


2013 ◽  
Vol 14 (1) ◽  
Author(s):  
Sindu Akhadiarto ◽  
A Fariani

The objective of this research was to study digestibility of kumpai minyak (Hymenachne amplexicaulis) amoniation by in vitro techniques. Materials used in this study were : kumpai oil grass; poultry manure; urea; cattle rumen fluid; Mc buffer solution Dougall; NaOH or H3PO4 and saturated HgCl2. This research was held in two stage, the first was amoniation of kumpai minyak and second was in vitro analysis, both experiment was held at laboratory of Nutrition and Feed Animal, Agriculture Faculty at Sriwijaya University. The research used completely randomized design with 4 treatments and 4 replications which were: A0 (kumpai oil grass without urea), A1 (kumpai oil grass with urea 2%), A2 (kumpai oil grass with urea 4%) and A3 (kumpai oil grass with urea 6%). Parameters measuredwere dry matter digestibility, organic matter digestibility and gas production.. The result showed that the treatment were significantly difference (P<0.01) on organic matter digestibility, but non sinificantly differences (P>0.01) on dry matter digestibility and gas production.


2003 ◽  
Vol 54 (7) ◽  
pp. 703 ◽  
Author(s):  
H. D. Hess ◽  
L. M. Monsalve ◽  
C. E. Lascano ◽  
J. E. Carulla ◽  
T. E. Díaz ◽  
...  

In two in vitro experiments with the RUSITEC-apparatus, Brachiaria dictyoneura was tested alone and with legumes at dietary proportions of 1/3, 2/3, or 3/3 of Arachis pintoi (Expt 1) and 1/3 of Arachis pintoi, Cratylia argentea, or Calliandra calothyrsus (Expt 2). In Expt 2, all diets were evaluated with and without 80 mg/g diet of Sapindus saponaria fruits. In Expt 1, the stepwise replacement of the grass by A. pintoi curvi-linearly increased rumen fluid concentrations of ammonia, volatile fatty acids, bacteria, and protozoa. Methane release rates were 1.7, 7.3, 8.8, and 9.0�mmol/day. With increasing legume proportion, more organic matter and protein were degraded, the latter being only partially recovered as ammonia. In Expt 2, 1/3 of A. pintoi basically had the same effects as in Expt 1. Cratylia argentea was less effective in modifying the fermentation pattern. In association with a higher nutrient degradation and rumen ammonia concentration, C. argentea and A. pintoi increased methane release to about 3- and 4-fold levels. Calliandra calothyrsus reduced nutrient degradation and methane release per gram of organic matter degraded. Tannins, predominant in C. calothyrsus, might have affected methanogenesis. Sapindus saponaria reduced methanogenesis by 11% on average in grass-alone and legume-supplemented diets.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Yuhui Zheng ◽  
Yanyan Zhao ◽  
Shenglin Xue ◽  
Wei Wang ◽  
Yajing Wang ◽  
...  

The feeding value of replacing concentrate with cassava (Manihot esculenta) residue in the feed of Holstein cows was confirmed using an in vitro gas test. The treatments consisted of 0% (control, CON), 5%, 10%, 15%, 20%, 25%, and 30% inclusion of cassava residue in fermentation culture medium composed of buffer solution (50 mL) and filtrated rumen fluid (25 mL). The parameters analyzed included the kinetics of gas production and fermentation indexes. Forty-eight hours later, there were no significant differences on in vitro dry matter disappearance (IVDMD), pH, and microbial crude protein (MCP) content among treatments (p > 0.05). However, the “cumulative gas production at 48 h” (GP48), the “asymptotic gas production” (A), and the “maximum gas production rate” (RmaxG) all increased linearly or quadratically (p < 0.01). The GP48 was significantly higher in the 25% treatment compared to the other treatments, except for the 30% (p < 0.01). The A was significantly larger in the 25% treatment compared to the other treatments, except for the 20% and 30% (p < 0.01). The RmaxG was distinctly larger in the 25% treatment compared to other treatments (p < 0.01); moreover, the “time at which RmaxG is reached” (TRmaxG) and the “time at which the maximum rate of substrate degradation is reached” (TRmaxS) were significantly higher in the 25% treatment than the CON, 20%, and 30% treatments (p < 0.01). Additionally, the content of ammonia-N (NH3-N) in all treatments showed linearly and quadratically decreases (p < 0.01), whereas total volatile fatty acid (VFA), iso-butyrate, butyrate, and iso-valerate contents changed quadratically (p = 0.02, p = 0.05, p = 0.01, and p = 0.02, respectively); all of these values peaked in the 25% treatment. In summary, the 25% treatment was associated with more in vitro gas and VFA production, indicating that this cassava residue inclusion level may be used to replace concentrate in the feed of Holstein cows. However, these results need to be verified in vivo.


1996 ◽  
Vol 1996 ◽  
pp. 211-211
Author(s):  
Peter Young ◽  
F. P. O'Mara ◽  
M. Rath ◽  
P. J. Caffrey

Rumen fluid and cellulase based techniques are widely used to predict the digestibility of compound feeds and their ingredients. Recently gammanase enzymes have been added to some cellulase based techniques (Dowman, 1993; De Boever et al., 1994). Few comparisons of these techniques have involved by-product concentrate ingredients. The objective of this experiment was to compare the ability of three techniques, in vitro rumen fluid (RF), pepsin cellulase gammanase (PCG), and neutral detergent cellulase gammanase (NCDG), to predict the in vivo organic matter digestibility (OMD) of concentrate ingredients.


2011 ◽  
Vol 11 (2) ◽  
pp. 29-34 ◽  
Author(s):  
Novita Hindratiningrum ◽  
Muhamad Bata ◽  
Setya Agus Santosa

Products of rumen fermentation and protein microbial of dairy cattle feed with rice bran ammonization and some feedstuffs as an energy sourcesABSTRACT. This study aims to examine the energy sources of feed ingredients that can increase the production of Volatile Fatty Acids (VFA), N-NH3, microbial protein synthesis, total gas production and metabolic energy. The material used is as a source of rumen fluid inoculum from Frisian Holstein cows (FH) females, amoniasi rice straw, salt, mineral mix brand "Ultra Minerals' production Eka Farma Semarang, onggok wet and dry, corn, and rice bran. Observed variable is the concentration of (VFA), N-NH3, rumen microbial protein synthesis, and total gas production. Based on the analysis of diversity seen any significant effect (P0.05) on total VFA concentration, N-NH3 and total gas but had no effect (P0.05) on microbial protein synthesis. Conclusion of research is the provision of energy sources with rice bran treatment, onggok wet and dry corn flour can be used as fermentable carbohydrates on feed hay amoniasi in vitro.


2014 ◽  
Vol 59 (No. 10) ◽  
pp. 450-459 ◽  
Author(s):  
M. Gunal ◽  
A. Ishlak ◽  
A.A. AbuGhazaleh ◽  
W. Khattab

The effects of adding essential oils (EO) at different levels (125, 250, 500 mg/l) on rumen fermentation and biohydrogenation were examined in a rumen batch culture study. Treatments were: control without EO (CON), control with anise oil (ANO), cedar wood oil (CWO), cinnamon oil (CNO), eucalyptus oil (EUO), and tea tree oil (TEO). Essential oils, each dissolved in 1 ml of ethanol, were added to the culture flask containing 40 ml of buffer solution, 2 ml of reduction solution, 10 ml of rumen fluid, 25 mg of soybean oil, and 0.5 g of the diet. After 24 h of incubation in a water batch at 39&deg;C, three samples were collected from each flask and analyzed for ammonia-N, volatile fatty acids (VFA), and fatty acids (FA). Expect for CNO, the proportions of acetate, propionate, and acetate to propionate ratios were not affected (P &gt; 0.05) by EO addition. Addition of CWO, CNO, and TEO reduced total VFA concentrations (P &lt; 0.05) regardless of dose level. The ammonia-N concentration was greater in cultures incubated with EO regardless of dose level. Compared with the CON, the concentrations of C18:0 and trans C18:1 were reduced (P &lt; 0.05) with EO addition regardless of dose level. Compared with the CON, the concentration of linoleic acid was greater (P &lt; 0.05) when EO were added at 500&nbsp;mg/l. EO tested in this study had no effects on VFA profile but significantly reduced the formation of biohydrogenation products (C18:0 and trans C18:1).


Sign in / Sign up

Export Citation Format

Share Document