Practice of Using Fire-safety Sleeve for Free Flow Conduits of the Engineering Systems Made of Polymer Materials

Author(s):  
A.V. Pekhotikov ◽  
◽  
B.B. Kolchev ◽  
P.A. Visloguzov ◽  
D.V. Belyaev ◽  
...  

To exclude the possibility of fire spreading through the utility lines of buildings and structures, various technical means are used that meet the normative established characteristics. As part of the intersection nodes of the enclosing building structures of sewage and water disposal systems, fire-safety sleeves are used, which ensure the limit of fire spreading to adjacent rooms through the node crossed by the pipeline. The use of fire-safety sleeves for these utility lines is only possible for free flow conduits of the systems made of polymer materials (polypropylene, polyethylene, polyvinyl chloride, etc.). For different types of the pipelines, other technical solutions are used to limit the spread of fire. The principle of fire-safety sleeves operation is to completely cover the intersecting mounting opening of the building structure in the shortest possible time and prevent the transfer of flame and combustion products to adjacent rooms. The efficiency of the operation of fire-safety sleeve and the preservation of its fire-technical characteristics for a given time depends on the following factors: correct installation carried out in accordance with the established instructions; design of fire-safety sleeves; physical and chemical properties of the material used for thermally expanding sleeve liner; material of a polymer pipeline. Statistics of the conducted tests show that the maximum fire resistance limits are typical for intersection nodes with polymer pipelines having diameter from 32 to 110 mm. For the pipelines with a diameter of 160 mm and more, it is very difficult to achieve similar fire-technical characteristics due to the large area of the overlapping mounting openings and the increased inertia of a fire-safety sleeve actuation.

2018 ◽  
Vol 930 ◽  
pp. 254-257 ◽  
Author(s):  
Francisca Pereira de Araújo ◽  
Josy Anteveli Osajima ◽  
Mônica Regina Silva de Araujo ◽  
Edson Cavalcanti da Silva Filho ◽  
João Sammy Nery de Souza

Polystyrene is commercial polymer of extensive use in industrial scale due to great physical and chemical properties and low cost. Lifespan of polymer materials can be changed by incorporation of additions to polymeric matrix.The present study aimed to evaluate the influence of crystal violet dye in polystyrene matrices when irradiated by visible radiation. The samples were studied in the form of films, in which solution of crystal violet (5.0x10-4mol.L-1) was added to the PS solution (8% w / w). The films were irradiated with commercial lamp for 150 hours and analyzed with UV-Vis and FTIR. The results showed that the dye degraded at a rate of 16%, however the FTIR analysis revealed that polystyrene did not degrade under the conditions studied, since no formation of carbonyl compounds was observed.


2021 ◽  
Author(s):  
Mengen Wang ◽  
Jorge Anibal Boscoboinik ◽  
Deyu Lu

Abstract The growth of the silica (SiO2) bilayer (BL) films on transition metal (TM) surfaces creates a new class of two-dimensional (2D) crystalline, self-contained materials that interact weakly with the TM substrate. The BL-silica/TM heterojunction has shown unique physical and chemical properties that can lead to new chemical reaction mechanisms under the sub-nm confinement and broad potential applications ranging from surface protection, nano transistors, molecular sieves to nuclear waste removal. Novel applications of BL-silica can be further explored as a constituent of van der Waals assembly of 2D materials. Key to these applications is an unmet technical challenge to exfoliate and transfer BL-silica films in a large area from one substrate to another without material damage. In this study, we propose a new exfoliation mechanism based on gas molecule intercalation from density functional theory studies of the BL-silica/TM heterojunction. We found that the intercalation of O atoms and CO molecules at the BL-silica/TM interface weakens the BL-silica – TM hybridization, which results in an exponential decrease of the exfoliation energy against the interface distance, as the coverage of interfacial species increases. This new intercalation mechanism opens up the opportunity for non-damaging exfoliation and transfer of large area silica bilayers.


2015 ◽  
Vol 645-646 ◽  
pp. 347-351
Author(s):  
Si Min He ◽  
Jin Chen ◽  
Kuang Fang ◽  
Zhi Qiang Qiao ◽  
Jin Shan Li

Controlled composite materials arrays have been widely applied for their unique physical and chemical properties, with the aim of developing nanodevices functionality. Nanosphere lithography is a successful technique for fabricating highly ordered arrays of various materials. In this work, the polystyrene colloidal crystal template in large area on Si substrate was obtained via dipping method. The thickness of the single layer template fabricated can be precisely controlling the particle concentration and the film formation speed. The ordered arrays of Fe2O3 nanowires were obtained via convenient spin method on this template and heat treatment subsequently. Finally, the uniform Al/Fe2O3 arrays were produced by magnetron sputtering method. These periodic composite arrays cover large area substrates (of dimensions > 1 cm × 1 cm) and are uniform in terms of nanowire height and density. The arrays thickness and gaps between nanowires are easily controlled by either the diameter of colloidal crystal or the parameters of magnetron sputtering.


2020 ◽  
Vol 5 (1) ◽  
pp. 26-33
Author(s):  
Mohammad Deden ◽  
Abdul Rahim ◽  
Asrawaty Asrawaty

Today, the use of synthetic polymers as plastics has an important role in the economy of modern industrial society. Plastic packaging is often used as a food packaging material. However, the use of plastics can pollute the environment, because plastic is difficult to degrade naturally. One alternative to replacing the use of conventional plastics as food packaging is biodegradable plastic called edible film. The use of gadung tuber starch as a raw material for making edible films will not disturb food stability, because gadung is not consumed such as rice, corn and cassava. Gadung tubers are very good for edible film polymer materials containing high carbohydrates. Aim to determine the physical and chemical properties of the edible film starch of gadung tubers at various concentrations. The conclusion is that the optimum conditions for making edible films are good at 6% starch concentration with KA 11.50% and an average thickness of 0.13 mm.


2021 ◽  
Vol 2 (11(75)) ◽  
pp. 68-77
Author(s):  
G. Aliyev ◽  
A. Aliyev

Strength if a multilayer polymer pipe under the action of the system if external loads is studied taking into account the change in physical and mechanical properties of the material. Mechanical effect, the dependence of joint deformability of several polymer materials on the character of change if their physical and chemical properties was established. Occurrence and dependence of physical and chemical properties of the material and also breaking stresses between the layer determining adhesive strength of layered polymer pipe was established.


2018 ◽  
Vol 484 (1) ◽  
pp. 165-187 ◽  
Author(s):  
Jim Buckman ◽  
Carol Mahoney ◽  
Shereef Bankole ◽  
Gary Couples ◽  
Helen Lewis ◽  
...  

AbstractMudrocks are highly heterogeneous in a range of physical and chemical properties, including: porosity and permeability, fissility, colour, particle composition, size, orientation, carbon loading, degree of compaction, and diagenetic overprint. It is therefore important that the maximum information be extracted as efficiently and completely as possible. This can be accomplished through high-resolution analysis of polished thin sections by scanning electron microscopy (SEM), with the collection of large-area images and X-ray elemental map montages, and the application of targeted particle analysis. A workflow model, based on these techniques, for the digitization of mudrocks is presented herein. A range of the data that can be collected and the variety of analyses that can be achieved are also illustrated. Data collection is discussed in terms of inherent problems with acquisition, storage, transfer and manipulation, which can be time-consuming and non-trivial. Similar information and resolutions can be achieved through other techniques, such as QEMSCAN and infra-red (IR)/Raman spectroscopic mapping. These can be seen as complementary to the workflow described herein.


Nanoscale ◽  
2015 ◽  
Vol 7 (23) ◽  
pp. 10490-10497 ◽  
Author(s):  
Lei Yang ◽  
Qi Fu ◽  
Wenhui Wang ◽  
Jian Huang ◽  
Jianliu Huang ◽  
...  

“Band gap engineering” in two-dimensional (2D) materials plays an important role in tailoring their physical and chemical properties.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4254 ◽  
Author(s):  
Ewa Szatyłowicz ◽  
Iwona Skoczko

The emission of carbon compounds (in the form of soot) to the atmosphere has a significant impact on the environment and human health. Air pollution with combustion products, having a unique combination of physical and chemical properties, is an important component of very fine suspended dust, which is emitted from various sources related to combustion processes. The carbon compounds in aerosol form and deposited in the substrate are found all over the Earth. The paper presents results of comparative research on the content of 16 polycyclic aromatic hydrocarbons (PAH) in soot samples obtained as a result of combustion of solid fuels such as hard coal with granulation above 60 mm, coal with a grain size of 25–80 mm, coal with a grain size of 8–25 mm, pellets and dry wood. On the basis of the conducted tests, it was found that the soot obtained in the combustion of coal in different granulation contains more cytotoxic PAH in comparison to the combustion of wood pellets or dry firewood.


Author(s):  
Ewa Szatyłowicz ◽  
Iwona Skoczko

The emission of carbon compounds (in the form of soot) to the atmosphere has a significant impact on the environment and human health. Air pollution with combustion products, having a unique combination of physical and chemical properties, is an important component of very fine suspended dust, which is emitted from various sources related to combustion processes. The carbon compounds in the aerosol and deposited in the substrate are found all over the Earth. The paper presents results of comparative research on the content of 16 polycyclic aromatic hydrocarbons (PAHs) in soot samples obtained as a result of combustion of solid fuels such as hard coal with granulation above 60 mm, coal with a grain size of 25-80 mm, coal with a grain size of 8-25 mm, pellets and dry wood. On the basis of the conducted tests, it was found that the soot obtained in the combustion of coal in different granulation contains more cytotoxic PAHs in comparison to the combustion of wood pellets or dry firewood.


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Sign in / Sign up

Export Citation Format

Share Document