Ensuring Fire Safety of Packages and Containers Made of Wood

Author(s):  
K.D. Isavnina ◽  
◽  
V.V. Ushanov ◽  
V.I. Shelkunov ◽  
N.I. Konstantinova ◽  
...  

The possibility of developing a methodology for conducting tests to assess flame retardness of packages for storing hazardous substances, materials, or products, as well as the use of the efficient integrated means of modifying wood for their manufacture is considered. The analysis of the basic principles of the methodology of testing the building structures and products of the current standards showed the fundamental possibility of assessing the level of protection of explosive substances, materials or products contained in the package from the effects of fire hazards in the time from the beginning of tests under standard temperature conditions to the occurrence of the standardized limit states. To carry out studies on the assessment of flame retardness of the wooden packages, the means were selected that ensure not only their fire protection, but also weather resistance and moisture resistance, as well as strength. Comparative experimental studies of flame retardness allowed to assess behavior of the wooden packages during complex processing, and to show the advantages of their use to ensure integrity, thermal insulation capacity and the possibility of long-term storage while maintaining the main operational properties. As a result, the principal possibility of using standard equipment and measuring instruments in accordance with GOST 30247.0—94 was established, the main criteria for the assessment of flame retardness were developed, the efficiency of fire protection, as well as the strength characteristics of a complex tool for its possible use in the manufacture of structural elements and wood products, were studied.

2020 ◽  
Vol 11 (3) ◽  
Author(s):  
V. V. Lomaha ◽  
O. Yu. Tsapko ◽  
Yu. V. Tsapko ◽  
O. P. Bondarenko

Reducing the fire prevention of timber is not only an economic task, but also has a social and environmental focus. From economic, technological and environmental perspective, an important problem in ensuring the viability and safe operation of construction sites is the development of fire-retardant coatings for wooden structures. The construction is increasingly looking for new highly effective means of fire protection of wood and wood products which should not only ensure the standardized fire resistance of wood, but also to maintain its operational parameters to solve environmental safety and durability. Studies of the effect of the radiation panel on the ignition of the wood sample have set the parameters of the flame ignition, which makes it possible to influence this process. It is proved that they consist in the formation of a layer of organic material on the surface, which provides heating to a critical temperature, when the intensive decomposition of the material begins with the release of the required amount of combustible gases and their ignition. This makes it possible to determine the effect of fire protection and the properties of protective compositions on the process of slowing down the rate of burning of wood. Experimental studies have confirmed that the untreated sample of wood, under the thermal action of the radiation panel has taken up, the flames spread over the entire surface, which led to its combustion. The application of a fire retardant varnish under the influence of temperature leads to a layer of foam coke and inhibition of heat transfer of high-temperature flame to the material and its ignition. Thanks to this, it became possible to determine the conditions for changing the parameters of combustion and braking during fire protection of wood, by forming a barrier for thermal conductivity. Thus, there is reason to argue for the possibility of directional control of the processes of fire protection of wood by the use of fireproof coatings that can form a protective layer on the surface of the material, which slows down the rate of burning of wood.


Fire Safety ◽  
2021 ◽  
Vol 37 ◽  
pp. 44-51
Author(s):  
E. Hulida ◽  
V. Sharуу

Introduction. Fires in closed premises of production and storage facilities are the most dangerous, because they hold large areas with a significant fire load. The current direction of providing a fire safety system at production and storage facilities in closed premises is to eliminate the conditions of the rapid development of fire and minimizing its effect through the use of fire curtains. This method of fire protection is practically not used in closed premises of production and storage facilities at the present stage. In most cases, fire partitions are used in such situations. Therefore, a topic issue today is the research of limiting the development of fires with the use of fire partitions and minimizing fire effects.Purpose. Investigate the process of spreading the fire in closed premises of production and storage facilities by using fire partitions to limit the speed of fire spread. Problem statement and solution. The following tasks must be solved to provide fire protection of production and storage facilities:1. to investigate the process of fire spread in closed premises of production and storage facilities without the use of fire partitions;2. to investigate the impact of fire partitions use on fire rate.Two possible modes of development fire in the premises are considered to solve the first problem: 1) with the presence of sufficient air (oxygen), with fire occurred in regulated fire load; 2) with insufficient air (oxygen), with fire occurred in regulated ventilation.It is necessary to choose the material and fire partition design accordingly to solve the second problem. The results of experimental studies [11] showed that fire partitions vermiculite-silicate plates can be used for various building structures manufacturing. Closed production and storage facilities structure analysis showed that these premises are constructed in most cases with a grid of columns 9Х12 m.Conclusions and proposals:1) There is only the first mode of fire with sufficient oxygen (air) in closed premises of production and storage facilities with a total area of more than 5000 m2 in the process of fire. The fire that occurred is regulated only by the fire load.2) The use of fire partitions between sections of the premises of production and storage facilities reduces the probability of fire spreading in the premises by about 3 times.3) It is necessary to continue research work in this direction to obtain more significant results of the process of development and spread of fire in the premises of production and storage facilities.


2021 ◽  
Vol 2 (10 (110)) ◽  
pp. 51-58
Author(s):  
Yuriy Tsapko ◽  
Roman Vasylyshyn ◽  
Oleksandr Melnyk ◽  
Vasyl Lomaha ◽  
Аleksii Tsapko ◽  
...  

The analysis of fire-protective materials for wooden building structures was carried out and the need to develop reliable methods for studying the process of washing out fire retardants from the surface of the building structure, which is necessary for the creation of new types of fire-protective materials, was established. That is why there arises a need to determine the conditions for the formation of a barrier for washing out and to establish a mechanism for inhibition of moisture transmission to the material. In this regard, a mathematical model was built of washing out fire retardants using a polymeric shell made of organic material as a coating, which makes it possible to estimate the effectiveness of a polymer shell by the amount of the washed-out fire retardant. According to the experimental data and theoretical dependences, the dynamics of the release of fire retardants from the fire-protective layer of the coating was calculated; it did not exceed 1.0 %, and therefore, ensures fire protection of timber. The results of determining the weight loss of the sample under the influence of water indicate the ambiguous impact of the nature of protection on the washout. In particular, this implies the availability of data sufficient for performing a high-quality process of moisture diffusion inhibition and, based on it, detection of the moment, from which a decrease in efficiency of a coating begins. The experimental studies proved that a sample of fire-protected timber after exposure to water for 30 days withstood the influence of a heat flow. In particular, the loss of timber weight after the temperature exposure was less than 6 %, and the temperature of flue gases did not exceed 185 °C. Thus, there is a reason to assert the possibility of directed control of the processes of fire protection of timber through the use of polymer coatings capable of forming a protective layer on the surface of fire-protected material, which inhibits the rate of washing out the fire retardants


Author(s):  
I. P. Korenkov ◽  
A. I. Ermakov ◽  
A. B. Mayzik ◽  
T. N. Laschenova ◽  
V. N. Klochkov ◽  
...  

The aim of the study is to evaluate the volume activity of radioactive waste (RW) by surface and specific alpha contamination using portable gamma-spectrometry.Materials and methods. Methods of rapid assessment of the content of α-emitting radionuclides in solid waste of various morphologies using gamma-spectrometers based on germanium detectors are considered. Computational methods for determining the effectiveness of radionuclide registration are presented.Results. The possibility of using portable gamma-ray spectrometry to assess the surface and specific activity of various materials contaminated with α-emitters (232Th, 235U, 238U, 237Np, 239Pu, 240Pu and 241Am) is shown. The calculated values of the registration efficiency of low-energy gamma-emitters obtained by modeling the spatial-energy parameters of the detector are given.To simplify the solution of this problem, the calculation program used 20 standard templates of various geometries (rectangular, cylindrical, conical, spherical, etc.). The main sources of error in the survey of contaminated surfaces, largesized equipment and building structures were investigated.Conclusions. The possibilities of portable γ-spectrometry for estimating the volume of RW based on the surface density of contamination of materials with radionuclides of uranium and transuranic elements are investigated. When using γ-spectrometer with a high-purity germanium detector with a range of γ-quanta extended in the low-energy region, radionuclides such as 232Th, 235U,238U, 237Np, 241Am were determined by their own radiation or by the radiation of their daughter products.The “problem” element is plutonium, for rapid evaluation of which it is proposed, in accordance with the radionuclide vector methodology, to use 241Am, which accumulates during the β-decay of 241Pu.According to calculations, the most likely value of the activity ratio 239Pu/241Am for the object where the work was performed (scaling factor) varies in the range from 5.0 to 9.0.Based on the results of calculations and experimental studies, the parameters of the efficiency of registration of various α-emitting radionuclides by portable γ-spectrometers. It has been found that for germanium detectors with an absolute efficiency of registering a point source of 7÷15%, it is n×10–5÷n×10–4%.


2021 ◽  
Vol 1038 ◽  
pp. 336-344
Author(s):  
Olena Pinchevska ◽  
Andriy Spirochkin ◽  
Denys Zavialov ◽  
Rostislav Oliynyk

The reasons of white spots appearance in the middle of oak timber are determined. These white spots reduce the cost of the lamina made of oak timbers - the front covering of floorboards. It is proposed to intensify the drying process by using oscillating drying schedules to avoid this defect. A method for calculating the duration of such drying is proposed. This method includes the peculiarities of heating and cooling periods kinetics of oak timbers with 25 mm and 30 mm thickness. The inexpediency of using the oscillation of the drying agent parameters in the range of wood moisture content below 20% has been established. An adequate model for calculating wood temperature and air humidity during wood heating and cooling periods has been developed using heat and mass transfer criteria and experimentally determined oak wood moisture conductivity coefficient. Based on the results of theoretical and experimental studies oscillating drying schedules of different thickness oak timbers are offered. Tests of the proposed schedules in industrial conditions showed no discoloration of the central layers of European oak (Quercus robur) timbers. The drying process duration was reduced by 1.5–2.4 times and energy consumption were reduced by 1.53 times.


1971 ◽  
Vol 36 (3) ◽  
pp. 322-335 ◽  
Author(s):  
Dennis E. Puleston

AbstractExperimental techniques have provided an exciting breakthrough for the functional analysis of Maya chultuns. While deep cistern-like chultuns, common at certain sites in the northern lowlands, have been shown to be functional for water storage, smaller lateral-chambered chultuns characteristic of certain parts of the southern lowlands probably had a very different function. Excavation and examination of the latter features, in light of a whole range of possibilities, suggest that they were constructed to be used for food storage. Experimental studies, however, reveal them to be unsuitable for the storage of most traditional foods, including maize. At least one local food crop, the seed of the ramon (Brosimum alicastrum, Moraceae), appears to be ideally suited for long-term storage under these conditions. Chambers constructed beneath platforms in the northern lowlands may have been used for the storage of maize. A need for more experimental work is indicated.


2018 ◽  
Vol 193 ◽  
pp. 03026 ◽  
Author(s):  
Marina Gravit ◽  
Vladimir Lyulikov ◽  
Alina Fatkullina

The review of modern software systems that allow producing modeling and calculation of fire resistance of building structures, as well as simulating fire protection, is given. Particular attention is paid to the software Sofistik, which allows you to synchronize with Autodesk Revit and calculate the fire protection of building structures for various temperature regimes.


MODUL ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 50
Author(s):  
Yemima Sahmura Vividia ◽  
Bangun IR Harsritanto

Vertical occupancy, especially apartments, began to live the face of the city. Not without reason, housing needs continue to increase sharply as the availability of vacant land is increasingly limited. Occupying an apartment becomes a trend and lifestyle for young people. The reason boils down to productivity. The construction of apartments is usually built close to various activity centers, both business, commercial, education, health to entertainment. The improvement of building construction is not supported by the availability of land that is increasingly limited, especially in the city of Jarakta, making the construction of high-rise buildings anticipate this. The construction of multi-story buildings also increases the risk of fire. In 2018, according to him, there were at least 1,078 recorded disaster events throughout 2018. Head of the Jakarta Fire and Rescue Management Agency, Subedjo, said that out of a total of 897 buildings or tall buildings in Jakarta, 280 tall buildings had not yet accomplished the fire protection system (Dinas, 2018).Therefore, this research needs to be done to evaluate the lifesaving facilities and infrastructure in the building. The application of fire safety in buildings can be evaluated regarding to NFPA 101 (2013). Based on NFPA 101A: Guide on Alternative Approaches for Life Safety (2013), there are 12 elements of safety and Regulation of the Minister of Public Works No. 26 / PRT / M / 2008 concerning Technical Requirements of Fire Protection Systems in Building Buildings. The building that became the object of research is one of the buildings in the area of Jakarta mentioned building X and building Y. The variables that are the focus of the research are fire stairs, fire doors, and access roads. Based on the results of the study, the level of reliability of the means of saving lives against fire hazards in building X is equal to 58% and in building Y is 65%.


2019 ◽  
Vol 91 ◽  
pp. 02017 ◽  
Author(s):  
Anton Pilipenko ◽  
Ekaterina Bobrova ◽  
Alexey Zhukov

Construction insulation systems should provide solutions to the problems of creation of suitable conditions of load-bearing construction elements and whole construction, reduction of heat loss through thermal insulation layer, and creation of living comfort in buildings. The article presents the results of experimental studies, the purpose of which is to optimize the composition of extruded polystyrene foam, the formation of methods for selecting its composition and the development of systems for the use of products based on extruded polystyrene foam. Main provisions of the method of analytical optimization, which allows significantly reducing the material and time costs for processing the experimental results, are also provided. Aspects of the implementation of building systems using extruded polystyrene foam both from the point of view of minimizing heat loss through contact areas and the degree of influence of vapor permeability of building structures on the temperature and humidity conditions of premises are studied. Mandatory criteria for construction with the use of building systems are safety conditions, including both structural safety (including maintenance-free cycle) and fire safety.


2020 ◽  
Vol 164 ◽  
pp. 01006
Author(s):  
Ruslan Khrestenko ◽  
Ekaterina Sokolova ◽  
Dmitrii Okulovsky ◽  
Valeri Azarov

It is noted that the urban environment is polluted by oil products; in particular, there is a large pollution of atmospheric air. It is indicated that one of the pollution sources is the “small” spills, which are characteristic of urban areas. Experimental studies have been carried out on the gasoline distribution in atmospheric air at “small” spills. A single experiment at a low wind speed is considered. Data were obtained on the dependence of gasoline concentration in atmospheric air on the distance from the spill, the height above the level of the spill and the time of the spill. The component composition was studied using chromatographic studies. It is indicated that the distribution of gasoline vapors in the atmosphere is influenced by the ambient temperature, wind speed, surface area of the spill, time from the moment of spilling and the distance above the level of the spill. The gasoline dispersion in atmospheric air was calculated with the software using experimental and calculated data on the surface area of the spill. It is indicated that at low wind speeds (up to 0.5 m/s) from “small” spills of gasoline (up to 3 liters), significant excesses of standards for the content of harmful substances in the atmospheric air can be observed. It was determined that during spilling there is an excess of maximum permissible concentrations of single, hazardous substances such as ethyl benzene, m-xylene and amyl alcohol in the air.


Sign in / Sign up

Export Citation Format

Share Document