scholarly journals Application of Augmented Water Flooding Using Ultrasound Energy to Improve Oil Recovery

2021 ◽  
Vol 6 (2) ◽  
pp. 1-5
Author(s):  
U. Hassan ◽  
M. B. Adamu ◽  
I. Bukar ◽  
M. A. Muhammad

The application of ultrasound energy in improving oil recovery is an emerging technique, it has been tested in laboratories and some field applications in different parts of the world. In this study, Nigerian crude oil of 4.21 cSt viscosity and sandstone rock samples were tested using a designed and constructed experimental rig. The rig is an analogue of a standard core flooding set up and works on the principle of fluid flow in porous media. Furthermore, a modeled equation was developed to better understand the effects of power and time on the volume of oil recovered at a constant ultrasound frequency.  Results obtained show a positive impact in the recovery of residual oil during waterflooding with the assisted ultrasound energy. About 2-fold increase in the recovery of oil was observed when the ultrasound energy was applied to augment the waterflooding process. Model equations developed were found to be adequate because the adjusted and predicted R-squared values show reasonable agreement (R-adjusted = 0.9993, R-Predicted = 0.9974). 

2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Malek Jalilian ◽  
Peyman Pourafshary ◽  
Behnam Sedaee Sola ◽  
Mosayyeb Kamari

Designing smart water (SW) by optimizing the chemical composition of injected brine is a promising low-cost technique that has been developed for both sandstone and carbonate reservoirs for several decades. In this study, the impact of SW flooding during tertiary oil recovery phase was investigated by core flooding analysis of pure limestone carbonate rocks. Increasing the sulfate ion concentration by using CaSO4 and MgSO4 of NaCl concentration and finally reducing the total salinity were the main manipulations performed to optimize SW. The main objective of this research is to compare active cations including Ca2+ and Mg2+ in the presence of sulfate ions (SO42−) with regard to their efficiency in the enhancement of oil production during SW flooding of carbonate cores. The results revealed a 14.5% increase in the recovery factor by CaSO4 proving its greater effectiveness compared to MgSO4, which led to an 11.5% production enhancement. It was also realized that low-salinity water flooding (LSWF) did not lead to a significant positive effect as it contributed less than 2% in the tertiary stage.


2011 ◽  
Vol 391-392 ◽  
pp. 1051-1054
Author(s):  
Shu Li Chen ◽  
Wen Xiang Wu ◽  
Jia Bin Tang

In laboratory, the minimum miscible pressure (MMP) of oil and CO2 was studied by using a slim tube model. The results showed that the greater the gas injection pressure, the higher the cumulative recovery. The gas breakthrough when the gas was injected with a volume of 0.7~0.8PV, the trend of cumulative recovery increase slowed down and the produced gas-oil ratio increased dramatically. Core flooding experiments were carried to compare the effects of CO2 and water flooding. As a result, the ultimate oil recovery of CO2 flooding increased with the increase of gas injection pressure. If the gas flooding was miscible, the ultimate recovery of CO2 flooding was generally higher than that of water flooding.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 972 ◽  
Author(s):  
Amin Rezaei ◽  
Hadi Abdollahi ◽  
Zeinab Derikvand ◽  
Abdolhossein Hemmati-Sarapardeh ◽  
Amir Mosavi ◽  
...  

As a fixed reservoir rock property, pore throat size distribution (PSD) is known to affect the distribution of reservoir fluid saturation strongly. This study aims to investigate the relations between the PSD and the oil–water relative permeabilities of reservoir rock with a focus on the efficiency of surfactant–nanofluid flooding as an enhanced oil recovery (EOR) technique. For this purpose, mercury injection capillary pressure (MICP) tests were conducted on two core plugs with similar rock types (in respect to their flow zone index (FZI) values), which were selected among more than 20 core plugs, to examine the effectiveness of a surfactant–nanoparticle EOR method for reducing the amount of oil left behind after secondary core flooding experiments. Thus, interfacial tension (IFT) and contact angle measurements were carried out to determine the optimum concentrations of an anionic surfactant and silica nanoparticles (NPs) for core flooding experiments. Results of relative permeability tests showed that the PSDs could significantly affect the endpoints of the relative permeability curves, and a large amount of unswept oil could be recovered by flooding a mixture of the alpha olefin sulfonate (AOS) surfactant + silica NPs as an EOR solution. Results of core flooding tests indicated that the injection of AOS + NPs solution in tertiary mode could increase the post-water flooding oil recovery by up to 2.5% and 8.6% for the carbonate core plugs with homogeneous and heterogeneous PSDs, respectively.


2020 ◽  
Vol 17 (5) ◽  
pp. 1318-1328
Author(s):  
Sara Habibi ◽  
Arezou Jafari ◽  
Zahra Fakhroueian

Abstract Smart water flooding, as a popular method to change the wettability of carbonate rocks, is one of the interesting and challenging issues in reservoir engineering. In addition, the recent studies show that nanoparticles have a great potential for application in EOR processes. However, little research has been conducted on the use of smart water with nanoparticles in enhanced oil recovery. In this study, stability, contact angle and IFT measurements and multi-step core flooding tests were designed to investigate the effect of the ionic composition of smart water containing SO42− and Ca2+ ions in the presence of nanofluid on EOR processes. The amine/organosiloxane@Al2O3/SiO2 (AOAS) nanocomposite previously synthesized using co-precipitation-hydrothermal method has been used here. However, for the first time the application of this nanocomposite along with smart water has been studied in this research. Results show that by increasing the concentrations of calcium and sulfate ions in smart water, oil recovery is improved by 9% and 10%, respectively, compared to seawater. In addition, the use of smart water and nanofluids simultaneously is very effective on increasing oil recovery. Finally, the best performance was observed in smart water containing two times of sulfate ions concentration (SW2S) with nanofluids, showing increased efficiency of about 7.5%.


2021 ◽  
Vol 11 (16) ◽  
pp. 7184
Author(s):  
Han Am Son ◽  
Taehun Lee

This study reports the size-dependent interactions of silica nanoparticle (NP) dispersions with oil, which facilitate oil recovery from sandstone rock. Herein, we studied various 7–22 nm sized colloidal silica NPs (CSNPs; the colloidal state when dispersed in aqueous solutions) and fumed silica nanoparticles (FSNPs; the dry powder state). Interfacial tension at the oil-nanofluids interface declined with decreasing NP size in a range from 7 to 22 nm. This is because NP spatial density at the interface increased with smaller particle size, thereby, the interface area per NP decreased to approximately 1/30, and interfacial energy had reduced enough. In addition, smaller NPs more strongly were adsorbed to the rock because of improved diffusion in suspension and increased adsorption density. This caused creating a wedge film between oil and rock, which changed the oil contact angle. Due to this effect, core flooding experiments indicated that oil recovery increased with decreasing particle size. However, FSNP dispersions exhibited low recovery factor because of particle aggregation. This phenomenon may facilitate massive permeability reduction, thus causing oil trapping inside rock pore. We found that both the sizes and types of CSNPs and FSNP affected the Interfacial tension at oil-water interface and rock surface wettability, which influenced ultimate oil recovery.


2020 ◽  
Vol 1 (2) ◽  
pp. 83
Author(s):  
Madi Abdullah Naser ◽  
Mohammed A Samba ◽  
Yiqiang Li

Laboratory tests and field applications shows that the salinity of water flooding could lead to significant reduction of residual oil saturation. There has been a growing interest with an increasing number of low-salinity water flooding studies. However, there are few quantitative studies on seawater composition change and it impact on increasing or improving oil recovery.  This study was conducted to investigate only two parameters of the seawater (Salinity and pH) to check their impact on oil recovery, and what is the optimum amount of salinity and ph that we can use to get the maximum oil recovery.  Several core flooding experiments were conducted using sandstone by inject seawater (high, low salinity and different pH). The results of this study has been shown that the oil recovery increases as the injected water salinity down to 6500 ppm and when the pH is around 7. This increase has been found to be supported by an increase in the permeability. We also noticed that the impact of ph on oil recovery is low when the pH is less than 7.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaoyan Wang ◽  
Jie Zhang ◽  
Guangyu Yuan ◽  
Wei Wang ◽  
Yanbin Liang ◽  
...  

Surfactant polymer (SP) flooding has become an important enhanced oil recovery (EOR) technique for the high-water cut mature oilfield. Emulsification in the SP flooding process is regarded as a powerful mark for the successful application of SP flooding in the filed scale. People believe emulsification plays a positive role in EOR. This paper uses one-dimensional homogenous core flooding experiments and parallel core flooding experiments to examine the effect of emulsification on the oil recoveries in the SP flooding process. 0.3 pore volume (PV) of emulsions which are prepared using ultralow interface intension (IFT) SP solution and crude oil with stirring method was injected into core models to mimic the emulsification process in SP flooding, followed by 0.35 PV of SP flooding to flood emulsions and remaining oil. The other experiment was preformed 0.65 PV of SP flooding as a contrast. We found SP flooding can obviously enhance oil recovery factor by 25% after water flooding in both homogeneous and heterogeneous cores. Compared to SP flooding, emulsification can contribute an additional recovery factor of 3.8% in parallel core flooding experiments. But there is no difference on recoveries in homogenous core flooding experiments. It indicates that the role of emulsification during SP flooding will be more significant for oil recoveries in a heterogeneous reservoir rather than a homogeneous reservoir.


2021 ◽  
Vol 11 (2) ◽  
pp. 925-947
Author(s):  
Erfan Hosseini ◽  
Mohammad Sarmadivaleh ◽  
Dana Mohammadnazar

AbstractNumerous studies concluded that water injection with modified ionic content/salinity in sandstones would enhance the oil recovery factor due to some mechanisms. However, the effects of smart water on carbonated formations are still indeterminate due to a lack of experimental investigations and researches. This study investigates the effects of low-salinity (Low Sal) solutions and its ionic content on interfacial tension (IFT) reduction in one of the southwestern Iranian carbonated reservoirs. A set of organized tests are designed and performed to find each ion’s effects and total dissolved solids (TDS) on the candidate carbonated reservoir. A sequence of wettability and IFT (at reservoir temperature) tests are performed to observe the effects of controlling ions (sulfate, magnesium, calcium, and sodium) and different salinities on the main mechanisms (i.e., wettability alteration and IFT reduction). All IFT tests are performed at reservoir temperature (198 °F) to minimize the difference between reservoir and laboratory-observed alterations. In this paper, the effects of four different ions (SO42-, Ca2+, Mg2+, Na+) and total salinity TDS (40,000, 20,000, 5000 ppm) are investigated. From all obtained results, the best two conditions are applied in core flooding tests to obtain the relative permeability alterations using unsteady-state methods and Cydarex software. The final part is the simulation of the whole process using the Schlumberger Eclipse black oil simulator (E100, Ver. 2010) on the candidate reservoir sector. To conclude, at Low Sal (i.e., 5000 ppm), the sulfate ion increases sulfate concentration lower IFT, while in higher salinities, increasing sulfate ion increases IFT. Also, increasing calcium concentration at high TDS (i.e., 40,000 ppm) decreases the amount of wettability alteration. In comparison, in lower TDS values (20,000 and 5000 ppm), calcium shows a positive effect, and its concentration enhanced the alteration process. Using Low Sal solutions at water cut equal or below 10% lowers recovery rate during simulations while lowering the ultimate recovery of less than 5%.


2019 ◽  
Vol 10 (4) ◽  
pp. 1551-1563 ◽  
Author(s):  
Siamak Najimi ◽  
Iman Nowrouzi ◽  
Abbas Khaksar Manshad ◽  
Amir H. Mohammadi

Abstract Surfactants are used in the process of chemical water injection to reduce interfacial tension of water and oil and consequently decrease the capillary pressure in the reservoir. However, other mechanisms such as altering the wettability of the reservoir rock, creating foam and forming a stable emulsion are also other mechanisms of the surfactants flooding. In this study, the effects of three commercially available surfactants, namely AN-120, NX-1510 and TR-880, in different concentrations on interfacial tension of water and oil, the wettability of the reservoir rock and, ultimately, the increase in oil recovery based on pendant drop experiments, contact angle and carbonate core flooding have been investigated. The effects of concentration, temperature, pressure and salinity on the performances of these surfactants have also been shown. The results, in addition to confirming the capability of the surfactants to reduce interfacial tension and altering the wettability to hydrophilicity, show that the TR-880 has the better ability to reduce interfacial tension than AN-120 and NX-1510, and in the alteration of wettability the smallest contact angle was obtained by dissolving 1000 ppm of surfactant NX-1510. Also, the results of interfacial tension tests confirm the better performances of these surfactants in formation salinity and high salinity. Additionally, a total of 72% recovery was achieved with a secondary saline water flooding and flooding with a 1000 ppm of TR-880 surfactant.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yanfu Pi ◽  
Jinxin Liu ◽  
Li Liu ◽  
Xuan Guo ◽  
Chengliang Li ◽  
...  

CO2 miscible flooding is an important technology for enhancing oil recovery and greenhouse gas storage in the world. As a tertiary recovery technology, it is usually applied after water flooding. Therefore, the actual reservoirs usually contain a lot of injected water in addition to connate water. The salinity of these formation waters varies from place to place. CO2 is an acid gas. After it is injected into the reservoir, it easily reacts with formation water and rock and affects the physical properties of the reservoir. However, no research results have been reported whether this reaction affects the minimum miscibility pressure (MMP) of CO2-crude oil, a key parameter determining miscible flooding in formation water. Based on CO2-formation water–rock interaction experiments, this paper uses the core flooding method to measure the CO2-crude oil MMP under different salinity in formation water. Results show that CO2 causes a formation water pH decrease from 7.4 to 6.5 due to its dissolution in formation water. At the same time, CO2 reacts with formation water, albite, potassium feldspar, and carbonate minerals in the cores to generate silicate and carbonate precipitates, which could migrate to the pore throat together with the released clay particles. Overall, CO2 increased core porosity by 5.63% and reduced core permeability by 7.43%. In addition, when the salinity of formation water in cores was 0, 4,767, and 6,778 mg/L, the MMP of CO2-crude oil was 20.58, 19.85, and 19.32 MPa, respectively. In other words, the MMP of CO2-crude oil decreased with the increase of salinity of formation water.


Sign in / Sign up

Export Citation Format

Share Document