scholarly journals Accumulation and Combined Effect of Salinity and Heavy Metals on Growth, Yield and Uptake of Green Pea Grown in Piped Hydroponics

2021 ◽  
Vol 3 (6) ◽  
pp. 110-116
Author(s):  
M. N. Haddad ◽  
M. A. Al-Jada

This research is to study the accumulation and combined effect of three salinity levels (750, 1500 and 3750 ppm) and of heavy metals (3.26, 3.2, 2 ppm, 2, and 0.2 of Zn, Cu, Fe, Mn, and Mo, respectively) on growth, yield, and uptake of green pea plants grown in piped hydroponic. Due to freshwater shortages, the use of hydroponic growth system was encouraged and used. The experiment consists of planting green peas from seeds into a 6” PVC piped system. After 2.5 months of growing, the experiment was stopped and plants parts were separated and divided into pods, leaves, stems, and roots, Then, physical, and chemical measurements conducted on them. Results indicated that (1) Salt concentration above 1500 mg/l was detrimental on the growth of green pea, (2) the best growth, yield, and biomass weight were observed at salinity of 750 mg/l, (3) heavy metals had positive effect on stems and roots of plants, but declined effect plant growth in general, (4) lines with nutrient deficiency were deficient in growth too, (5) sodium increased in plant’s organs in response to increased salinity in the feed solution, (6) the largest concentration of copper and zinc were found at the roots of the highest salinity level lines (36.05 and 211.58 mg/kg dry plant, respectively), (7) the hydroponic system proved to be efficient and economical and therefore, it is recommended for use for Palestinian farmers, and (8) results obtained in this study agree with previously published research with extent differences.

2018 ◽  
Author(s):  
C. Coy ◽  
A.V. Shuravilin ◽  
O.A. Zakharova

Приведены результаты исследований по изучению влияния промышленной технологии возделывания картофеля на развитие, урожайность и качество продукции. Выявлена положительная реакция растений на подкормку K2SO4 в период посадки. Корреляционно-регрессионный анализ урожайности и качества клубней выявил высокую степень достоверности результатов опыта. Содержание нитратов и тяжелых металлов в клубнях было ниже допустимых величин.The results of studies on the impact of industrial technology of potato cultivation on growth, yield and quality of products. There was a positive response of plants to fertilizer K2SO4 in the period of planting. Correlation and regression analysis of yield and quality of tubers revealed a high degree of reliability of the results of experience. The contents of nitrates and heavy metals in tubers was below the permissible values.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Fauzul Imron ◽  
Setyo Budi Kurniawan ◽  
Siti Rozaimah Sheikh Abdullah

AbstractLeachate is produced from sanitary landfills containing various pollutants, including heavy metals. This study aimed to determine the resistance of bacteria isolated from non-active sanitary landfill leachate to various heavy metals and the effect of salinity levels on the removal of Hg by the isolated bacterium. Four dominant bacteria from approximately 33 × 1017 colony-forming units per mL identified as Vibrio damsela, Pseudomonas aeruginosa, Pseudomonas stutzeri, and Pseudomonas fluorescens were isolated from non-active sanitary landfill leachate. Heavy metal resistance test was conducted for Hg, Cd, Pb, Mg, Zn, Fe, Mn, and Cu (0–20 mg L− 1). The removal of the most toxic heavy metals by the most resistant bacteria was also determined at different salinity levels, i.e., fresh water (0‰), marginal water (10‰), brackish water (20‰), and saline water (30‰). Results showed that the growth of these bacteria is promoted by Fe, Mn, and Cu, but inhibited by Hg, Cd, Pb, Mg, and Zn. The minimum inhibitory concentration (MIC) of all the bacteria in Fe, Mn, and Cu was > 20 mg L− 1. The MIC of V. damsela was 5 mg L− 1 for Hg and >  20 mg L− 1 for Cd, Pb, Mg, and Zn. For P. aeruginosa, MIC was > 20 mg L− 1 for Cd, Pb, Mg, and Zn and 10 mg L− 1 for Hg. Meanwhile, the MIC of P. stutzeri was > 20 mg L− 1 for Pb, Mg, and Zn and 5 mg L− 1 for Hg and Cd. The MIC of P. fluorescens for Hg, Pb, Mg, and Zn was 5, 5, 15, and 20 mg L− 1, respectively, and that for Cd was > 20 mg L− 1. From the MIC results, Hg is the most toxic heavy metal. In marginal water (10‰), P. aeruginosa FZ-2 removed up to 99.7% Hg compared with that in fresh water (0‰), where it removed only 54% for 72 h. Hence, P. aeruginosa FZ-2 is the most resistant to heavy metals, and saline condition exerts a positive effect on bacteria in removing Hg.


2016 ◽  
Vol 29 (1) ◽  
pp. 23-26
Author(s):  
M Iqbal Hossain ◽  
M Nural Anwar

The aim and objective of the study was to isolate and characterize heavy metal tolerant microorganisms from tannery effluents. Six effluent samples were collected aseptically and their physical and chemical parameters were determined. A total of 40 bacterial colonies were isolated from these effluent samples. Among them, six bacterial isolates were characterized provisionally as Alcaligenes aquamarinus, Bacillus coagulans, Bacillus firmus, Enterobacter cloacae, Pseudomonas alcaligens and Pseudomonas mendocina based on morphological, cultural and biochemical characteristics. The survibality and tolerance to heavy metals (Cr and Cu) of these isolates were examined. All the isolates were found to grow at high concentration of CuSO4 (95ppm/ml) and varying degrees of chromium (K2Cr2O7). The highest tolerance was shown by Alcaligenes aquamarinus. These heavy metal tolerant organisms could be potential agents for bioremediation of heavy metals polluted environment.Bangladesh J Microbiol, Volume 29, Number 1, June 2012, pp 23-26


Galaxies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Christian Henkel ◽  
Leslie K. Hunt ◽  
Yuri I. Izotov

Dwarf galaxies are by far the most numerous galaxies in the Universe, showing properties that are quite different from those of their larger and more luminous cousins. This review focuses on the physical and chemical properties of the interstellar medium of those dwarfs that are known to host significant amounts of gas and dust. The neutral and ionized gas components and the impact of the dust will be discussed, as well as first indications for the existence of active nuclei in these sources. Cosmological implications are also addressed, considering the primordial helium abundance and the similarity of local Green Pea galaxies with young, sometimes protogalactic sources in the early Universe.


2022 ◽  
Vol 11 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Islam A. Abdelhafeez ◽  
Sayed A. El-Tohamy ◽  
Mokhtar A. Abd ul-Malik ◽  
Shaban A. A. Abdel-Raheem ◽  
Farida M.S. El-Dar

Organic pollutants cause many environmental problems to our environment because of their toxicity, non-degradation and ability to long-range transport. The most common organic pollutants are known as persistent organic pollutants (POPs) and are known as hydrocarbons. Effective techniques for the removal of hydrocarbons and heavy metals from soil have drawn great attention. Remediation techniques represent one of the most important of these techniques because of their gentle impact on the environment. The study highlights numerous methods for Physical and chemical remediation techniques with explanation of the ability of some plants and agricultural wastes for remediation.


2014 ◽  
Vol 15 (1-2) ◽  
pp. 42-52
Author(s):  
V. L. Samokhvalova ◽  
Y. A. Pogromskaya ◽  
A. I. Fateev ◽  
S. G. Zuza ◽  
V. A. Zuza

The method of remediation of soil technogenic polyelemental contaminated mainly Cd, Zn and Cu, where due to the use as a sorbent - ameliorants compounds of iron (II) and phosphate fertilizers in a certain ratio in accordance with the level of contamination of soils, increase in the efficiency of their environmental rehabilitation and recovery 's natural buffer properties, through influence on the processes of different hazard classes heavy metals migration and trophic regime in the soil, and of the plants productivity with higher rates of ecological safety. The technical result of the elaboration method is to accelerate the processes of heavy metals physical and chemical fixation by making joint structuring improver of inorganic type together with mineral substrates that are effectively reduce toxicity of pollutants, optimization and restoration of the environmental state of the soil-plant system, its resistance to pollution by heavy metals. The elaboration of the method involved the improvement of the known method, accelerated of the of physical-chemical fixation processes of heavy metals different hazard classes by application of soil improver of inorganic type compatible with the type of inorganic mineral substrates, which enables for effective impact on expanding the range of heavy metals different hazard classes unable to migration into adjacent soil environment and on their mobility, to provide optimization and restoration of the soil-plant system ecological state, its resistance to heavy metals pollution. Distinctive features and benefits of the proposed technical solution, compared with known techniques and approaches are the following: ensuring the effective reduction of the heavy metals toxicity of danger various classes with optimal conditions of physical and chemical adsorption mainly Cd, Zn and Cu by simultaneous restoration of natural soil properties (elemental composition, physical and chemical properties for the improvement of organic matter and soil trophic mode) and an allowance of the soil nutrients; resource costs reduce complexity and implementation procedures for environmental rehabilitation of contaminated soils at different levels of heavy metals pollution in areas of impact sustainable sources influence of technogenic emissions due to the accuracy of the determining the ratio of soil improvers inorganic type doses and fertilizers, effective impact of the proposed composition of the first year of application and prolongation of validity up to 5 years.


Hydrology ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 30 ◽  
Author(s):  
Mohammed Abdus Salam ◽  
Shujit Chandra Paul ◽  
Farrah Izzaty Shaari ◽  
Aweng Eh Rak ◽  
Rozita Binti Ahmad ◽  
...  

Heavy metal pollution is one of the major environmental issues in recent decades owing to the rapid increase in urbanisation and industrialisation. Sediments usually act as sinks for heavy metals due to their complex physical and chemical adsorption mechanisms. In this study, heavy metals like lead (Pb), Zinc (Zn), Cadmium (Cd), Copper (Cu) and Iron (Fe) in the surface sediment from 15 location (upstream and downstream) on the Perak River, Malaysia were investigated by means of inductively coupled plasma optical emission spectroscopy (ICP-OES). The geostatistical prediction map showed the range of Pb, Zn, Cd, Cu and Fe concentration in upstream area was 14.56–27.0 µg/g, 20–51.27 µg/g, 1.51–3.0 µg/g, 6.6–19.12 µg/g and 20.24–56.58%, respectively, and in downstream areas was 27.6–60.76 µg/g, 49.04–160.5 µg/g, 2.77–4.02 µg/g, 9.82–59.99 µg/g and 31.34–39.5%, respectively. Based on the enrichment factor and geoaccumulation index, Cd was found to be the most dominant pollutant in the study area. Pollution load index, sediment quality guidelines and sediment environmental toxicity quotient data showed that the downstream sediment was more polluted than the upstream sediment in the Perak River. The multivariate analysis showed that Pb, Zn and Cu mainly originated from natural sources with minor contribution from human activities, whereas Fe and Cd originated from various industrial and agricultural activities along the studied area.


2020 ◽  
Vol 10 (19) ◽  
pp. 6708
Author(s):  
Patrícia Concórdio-Reis ◽  
Maria A. M. Reis ◽  
Filomena Freitas

Despite the efforts for minimizing the usage of heavy metals, anthropogenic activities still generate high amounts of wastewater containing these contaminants that cause significant health and environmental problems. Given the drawbacks of the conventional physical and chemical methods currently used, natural biosorbents (microbial cells or their products) arise as promising environmentally friendly alternatives. In this study, the binding efficiency of the polysaccharide secreted by Enterobacter A47, FucoPol, towards lead (Pb2+), cobalt (Co2+), copper (Cu2+) and zinc (Zn2+) cations was demonstrated. FucoPol revealed a higher performance for the biosorption of Pb2+, with a maximum overall metal removal of 93.9 ± 5.3% and a specific metal uptake of 41.1 ± 2.3 mg/gEPS, from a Pb2+ solution with an initial concentration of 10 mg/L, by a 5 g/L FucoPol solution. The overall metal removal decreased considerably (≤31.3 ± 1.6%) for higher Pb2+ concentrations (48 and 100 mg/L) probably due to the saturation of FucoPol’s binding sites. Pb2+ removal was also less efficient (66.0 ± 8.2%) when a higher FucoPol concentration (10 g/L) was tested. Pb2+ removal efficiency of FucoPol was maximized at pH 4.3, however, it was affected by lower pH values (2.5–3.3). Moreover, the FucoPol’s sorption performance was unaffected (overall metal removal: 91.6–93.9%) in the temperature range of 5–40 °C. These findings demonstrate FucoPol’s great potential for utilization as a biodegradable and safe biosorbent for treating waters and wastewaters contaminated with Pb2+.


Sign in / Sign up

Export Citation Format

Share Document