scholarly journals Effect of Soil Application of Zinc on Growth, Yield and Zinc Concentration in Rice Varieties

2021 ◽  
Vol 3 (6) ◽  
pp. 117-122
Author(s):  
M. Rafiqul Islam ◽  
Abida Sultana ◽  
M. Jahiruddin ◽  
Shofiqul Islam

Zinc (Zn) deficiency is widespread nutrient disorder in lowland rice growing areas in Asia, especially in Bangladesh. Intensive cropping with modern varieties causes depletion of inherent nutrient reserves in soils. The application of Zn fertilizers results in higher crop productivity and increases Zn concentration in crops. A field experiment was conducted to evaluate the effect of Zn application on growth, yield, and grain-Zn concentration in eight varieties of rice. The experiment was laid out in a split plot design with a distribution of Zn rates (0 kg ha-1 and 3 kg ha-1 from ZnO) to the main plots and rice varieties (BRRI dhan49, BRRI dhan52, BRRI dhan56, BRRI dhan57, Kalizira, Biroin, Gainja and Khirshapath) to the sub-plots. Zinc application improved effective tillers hill-1, grains panicle-1 and 1000-grain weight which impacted the grain yield of rice. Among the eight rice varieties, a significant increase of grain yield was recorded in BRRI dhan49, BRRI dhan52, BRRI dhan56 and BRRI dhan57 due to application of Zn. Zinc concentration of grain significantly increased in all rice varieties except Biroin. The highest grain-Zn concentration (19.1 mg kg-1) was noted in BRRI dhan57 with 3 kg ha-1 Zn and the lowest value (11.3 mg kg-1) was observed in BRRI dhan52 without Zn application. The highest percent increase of grain Zn concentration over control was obtained in high yielding rice variety BRRI dhan49 and the lowest Zn concentration was found in local rice variety Biroin.

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 554
Author(s):  
Patcharin Tuiwong ◽  
Sithisavet Lordkaew ◽  
Chanakan Prom-u-thai

The objective of this study was to evaluate the responses in grain yield and zinc concentration of wetland and upland rice varieties to Zn fertilizer application and different growing conditions. The wetland (Chainat 1; CNT1) and upland (Kum Hom CMU; KH CMU) rice varieties were grown under waterlogged and well-drained soil conditions with or without Zn fertilizer application. Zinc fertilizer (ZnSO4) was applied at 0 and 60 kg ha−1 in three stages at tillering, booting, and flowering. In the wetland variety, CNT1, grain yield decreased by 18.0% in the well-drained soil compared to the waterlogged conditions, but there was an 8.9% decrease in grain yield in the waterlogged soil compared to the well-drained soil in the upland variety, KH CMU. Applying Zn fertilizer affected yields differently between the varieties, decreasing grain yield by 11.9% in CNT1 while having no effect in KH CMU. For grain Zn concentrations in brown rice, applying Zn fertilizer increased Zn concentration by 16.5–23.1% in CNT1 and KH CMU under both growing conditions. In the well-drained soil, applying Zn fertilizer increased straw Zn concentration by 51.6% in CNT1 and by 43.4% in KH CMU compared with the waterlogged conditions. These results indicated that the wetland and upland rice varieties responded differently to Zn fertilizer application when grown in different conditions. Applying Zn fertilizer in the appropriate rice variety and growing conditions would help farmers to improve both the desirable grain yield and Zn concentration in rice.


Human zinc (Zn) deficiency is a worldwide problem, especially in developing countries due to the prevalence of cereals in the diet. Among different alleviation strategies, genetic Zn biofortification is considered a sustainable approach. However, it may depend on Zn availability from soils. We grew Zincol-16 (genetically-Zn-biofortified wheat) and Faisalabad-08 (widely grown standard wheat) in pots with (8 mg kg−1) or without Zn application. The cultivars were grown in a low-Zn calcareous soil. The grain yield of both cultivars was significantly (P≤0.05) increased with that without Zn application. As compared to Faisalabad-08, Zincol-16 had 23 and 41% more grain Zn concentration respectively at control and applied rate of Zn. Faisalabad-08 accumulated about 18% more grain Zn concentration with Zn than Zincol-16 without Zn application. A near target level of grain Zn concentration (36 mg kg−1) was achieved in Zincol-16 only with Zn fertilisation. Over all, the findings clearly signify the importance of agronomic Zn biofortification of genetically Zn-biofortified wheat grown on a low-Zn calcareous soil.


2014 ◽  
Vol 33 (3) ◽  
pp. 169 ◽  
Author(s):  
Indria W. Mulsanti ◽  
Sri Wahyuni ◽  
Hasil Sembiring

There is conflicting informations regarding the advantages of planting of stock seed (SS) over Extension Seed (ES) classes. An experiment to study the effect of different seedclasses on grain yield and yield components of five rice varieties was carried out at two locations i.e. Sukamandi and Muara Field Station during the wet and dry season of 2009. The treatment consisted of five rice varieties, namely: Ciherang, Mekongga, IR64, Cigeulis and Situ Bagendit, and their respective seed classes: namely breeder seed, foundation seed, stock seed and extension seed. The experiment was arranged in a split plot design with three replications, where rice varieties were as main plots and seed classes as sub plots. Variables to be evaluated consisted of: quality of seed before sowing, plant growth, yield components and grain yield. Performance of the observed variable of each rice variety derived from four different seed-classes in each location and planting season were not significantly different. Differences of seed classes only affected the percentage of seed purity. There was no significant difference on the grain yield and the seed yield obtained from different seed classes of each variety. These results disprove the belief that the higher seed class the higher productivity, which was found to be a wrong perception. Seed certification is designed to maintain the genetic purity of variety and not to increase the productivity.


Author(s):  
Narjes Moshfeghi ◽  
Mostafa Heidari ◽  
Hamid Reza Asghari ◽  
Mehdi Baradaran Firoz Abadi ◽  
Lynette K. Abbott ◽  
...  

Zinc (Zn) deficiency is a global micronutrient problem in agricultural systems. The main target of this experiment was to investigate the effectiveness of foliar application of Zn under field conditions. Grain yield and Zn concentration in seed were assessed with three replicate plots per treatment in a factorial (2 x 3 x 2) experiment for two barley cultivars (Yusuf and Julgeh), three foliar ZnO applications (nano, ordinary and nano+ordinary ZnO) and two commercial inocula of arbuscular mycorrhizal (AM) fungi (F. mosseae and R. irregularis). Among all Zn foliar applications, Zn applied in both nano and nano+ordinary forms were labile and resulted in the highest Zn concentration in grain of both barley cultivars. Cultivar Julgeh had higher grain Zn concentrations than did cultivar Yusuf in the same treatments. Nano ZnO was more effective than the ordinary form of ZnO and had the highest potential to improve physiological traits, plant growth and yield parameters in both cultivars. There was also a positive impact of the nano form of ZnO on phytase activity and carbonic anhydrase concentration in both barley cultivars. Inoculation with commercial inocula of AM fungi also enhanced grain Zn concentration, with Julgeh more responsive to inoculation with F. mosseae, and Yusuf more responsive to inoculation with R. irregularis. Generally, the combined application of Zn and inoculation with AM fungi improved physiological traits, grain yield and Zn availability to these two barley cultivars grown under field conditions. Accordingly, the nano form of Zn positively enhanced shoot morphological parameters, physiological parameters and grain Zn concentration. Application of the nano form ZnO in combination with inoculation with AM fungi had the most beneficial effects on grain Zn concentration, so this combined practice may have potential to reduce the requirement for application of synthetic Zn chemical fertilizers.


Author(s):  
Fatematujjohora Lima ◽  
Bidhan Chandro Sarker ◽  
Md. Enamul Kabir ◽  
Md. Nazmul Kabir

Transplanted (T.) aman rice is the major crop in the southwestern coastal region of Bangladesh where most of the fields remain fallow the rest of the year due to the cultivation of late-maturing and long-duration aman rice varieties with low yield potential. Timely transplanting of short-duration HYV varieties increased grain yield and allowed the field to be cleared earlier for the next crop. The experiment was conducted in the experimental field of Agrotechnology Discipline, Khulna University, Khulna during the monsoon (June to December) for  investigating the influence of transplanting dates on growth, yield attributes, and yield of Binadhan-7. The experiment was laid out in a randomized complete block design and replicated thrice. The experimental treatment comprised of ten transplanting dates (viz.,9 July, 16 July, 23 July, 30 July, 6 August, 13 August, 20 August, 27 August, 3 September, and 10 September) at 7 days intervals. Data recorded on different growth, yield, and yield contributing parameters were influenced substantially by the dates of transplanting. Results of this study showed that transplanting on 30 July produced the tallest plant (105.40 cm), highest tiller hill-1 (20.40), effective tillers hill-1 (17.30), panicle length (22.22 cm), number of grain panicle-1 (10.34), 1000 grain weight (22.83 g), grain yield (4.72 tha-1), straw yield (5.15 tha-1) and harvest index (47.85%) which were on parity with 6 August of transplanting. From the findings of this study, it can be concluded that from 30 July to 6 of August is optimum and recommended transplanting window for the short duration aman rice variety (Binadhan-7) in the coastal zone of southwestern Bangladesh. Furthermore, this transplanting window resulted in an early harvest and timely vacant the field for winter crop planting.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Chusnul Arif ◽  
Budi Indra Setiawan ◽  
Satyanto Krido Saptomo ◽  
Hiroshi Matsuda ◽  
Koremasa Tamura ◽  
...  

Subsurface drainage technology may offer a useful option in improving crop productivity by preventing water-logging in poor drainage paddy fields. The present study compared two paddy fields with and without sheet-pipe type subsurface drainage on land and water productivities in Indonesia. Sheet-pipe typed is perforated plastic sheets with a hole diameter of 2 mm and made from high-density polyethylene. It is commonly installed 30–50 cm below the soil surface and placed horizontally by a machine called a mole drainer, and then the sheets will automatically be a capillary pipe. Two fields were prepared, i.e., the sheet-pipe typed field (SP field) and the non-sheet-pipe typed field (NSP field) with three rice varieties (Situ Bagendit, Inpari 6 Jete, and Inpari 43 Agritan). In both fields, weather parameters and water depth were measured by the automatic weather stations, soil moisture sensors and water level sensors. During one season, the SP field drained approximately 45% more water compared to the NSP field. Thus, it caused increasing in soil aeration and producing a more significant grain yield, particularly for Inpari 43 Agritan. The SP field produced a 5.77 ton/ha grain yield, while the NSP field was 5.09 ton/ha. By producing more grain yield, the SP field was more effective in water use as represented by higher water productivity by 20%. The results indicated that the sheet-pipe type system developed better soil aeration that provides better soil conditions for rice.


2014 ◽  
Vol 65 (1) ◽  
pp. 61 ◽  
Author(s):  
Mohsin S. Al-Fahdawi ◽  
Jason A. Able ◽  
Margaret Evans ◽  
Amanda J. Able

Durum wheat (Triticum turgidum ssp. durum) is susceptible to Fusarium pseudograminearum and sensitive to zinc (Zn) deficiency in Australian soils. However, little is known about the interaction between these two potentially yield-limiting factors, especially for Australian durum varieties. The critical Zn concentration (concentration of Zn in the plant when there is a 10% reduction in yield) and degree of susceptibility to F. pseudograminearum was therefore determined for five Australian durum varieties (Yawa, Hyperno, Tjilkuri, WID802, UAD1153303). Critical Zn concentration averaged 24.6 mg kg–1 for all durum varieties but differed for the individual varieties (mg kg–1: Yawa, 21.7; Hyperno, 22.7; Tjilkuri, 24.1; WID802, 24.8; UAD1153303, 28.7). Zinc efficiency also varied amongst genotypes (39–52%). However, Zn utilisation was similar amongst genotypes under Zn-deficient or Zn-sufficient conditions (0.51–0.59 and 0.017–0.022 g DM μg–1 Zn, respectively). All varieties were susceptible to F. pseudograminearum but the development of symptoms and detrimental effect on shoot biomass and grain yield were significantly greater in Tjilkuri. Even though crown rot symptoms may still be present, the supply of adequate Zn in the soil helped to maintain biomass and grain yield in all durum varieties. However, the extent to which durum varieties were protected from plant growth penalties due to crown rot by Zn treatment was genotype-dependent.


2020 ◽  
Vol 5 (1) ◽  

Billions of peoples are directly affected from the micronutrient malnutrition called hidden hunger affecting one in three people. Micronutrient Iron (Fe), and zinc (Zn) deficiencies affect large numbers of people worldwide. Iron (Fe) deficiency leads to maternal mortality, mental damage and lower disease resistant of children. Likely Zinc (Zn) deficiency is responsible for stunting, lower respiratory tract infections, and malaria and diarrhea disease in human beings. Nepalese lentils are in fact rich sources of proteins and micronutrients (Fe, Zn) for human health and straws as a valuable animal feed. It has ability to sequester N and C improves soil nutrient status, which in turn provides sustainable production systems. Twenty five lentil genotypes were evaluated to analyze genotype × environment interaction for iron and zinc concentration in the grains. Analysis of variance (ANOVA) indicated that the accessions under study were found varied significantly (P=<0.001) for both seed Fe and Zn concentrations at all the three locations. Pooled analysis of variance over locations displayed highly significant (at P=<0.001) differences between genotypes, locations and genotype × location interaction for Zn micronutrient but insignificant genotype x location interaction was found in Fe micronutrient. Among 25 genotypes, the ranges for seed Fe concentration were 71.81ppm (ILL-2712)-154.03 ppm (PL-4) (mean 103.34 ppm) at Khajura, 79.89 ppm (ILL-3490)-128.14 ppm (PL-4) (mean 95.43 ppm) at Parwanipur, and 83.92 ppm (ILL-7979) -137.63 ppm (ILL-6819) (mean 103.11ppm) at Rampur, while the range across all the three locations was 82.53 ppm (ILL-7979) -133.49 ppm (PL-4) (mean 101.04 ppm). Likely the range for seed Zn concentration was 53.76 ppm (ILL-7723) – 70.15 ppm (ILL-4605) (mean 61.84 ppm) at Khajura, while the ranges for Parwanipur and Rampur were 54.21 ppm (ILL-7723) -91,94 ppm (ILL-4605) (mean 76.55 ppm) and 46.41 ppm (LG-12) – 59.95 ppm (ILL-4605) (mean 54.27 ppm) , respectively. The range across the three environments was 54.03 ppm (ILL-7723) – 75.34 ppm (HUL-57) (mean 64.22 ppm). Although both the micronutrients were influenced by environment, seed Fe was more sensitive to environmental fluctuations in comparison to seed Zn concentration. The G × E study revealed that it was proved that genotypes Sagun, RL-6 and LG-12 were more stable for seed Fe concentration and genotypes WBL-77, ILL-7164, RL-11 were found more stable for seed Zn concentration. In the AMMI analysis employing Gollob’s test, first two PC explained 100% of the G × E variation. PC 1 and PC 2 explained 87.19% and 12.81% of total G × E interactions for Fe concentration and likely for Zn concentration; PC1 and PC2 explained 70.11% and 29.88%, respectively. The critical perusal of biplot revealed that Parawnipur locations was found to discriminating power for Fe concentration while for Zn concentration Khajura location was found to be most discriminative. The critical analysis of pedigree vis-à-vis micronutrient concentration did not reveal any correlation. This is probably the first report on iron and zinc concentration in lentil from Nepal.


Author(s):  
Bidisha Borah ◽  
Kalyan Pathak

An investigation was carried out to determine an optimum micro-climate regimes for different promising varieties of rice for realizing higher yields under aerobic conditions. A field experiment was conducted in the Instructional Cum Research (ICR) Farm of Assam Agricultural University, Jorhat, Assam during autumn season of 2017. The experiment was laid out in a split-plot design with three replications. The treatments consisted of four micro-climatic regimes (M) in main plot viz., sowing of seed on 15th February (M1), 1st March (M2), 16th March (M3) and 1st April (M4) along with four different rice varieties (V) viz., CR-Dhan 205 (V1), CR-Dhan 203 (V2), CR-Dhan 204 (V3) and Inglongkiri (V4) in sub plot. The results of the experiment revealed that among the different micro-climatic regimes, the micro-climate associated with 1st April recorded positive effect on micro-climate related and yield parameters in terms of canopy temperature, light intensity, soil moister content, soil temperature, dry matter accumulation, leaf area index, number of effective tillers and grain yield (3004 kg/ha), followed by the micro-climate associated with 16th March sown crop. Among the varieties evaluated, CR-Dhan 203 recorded the highest value in terms of number of effective tillers (187/m2) followed by Inglongkiri, CR-Dhan 204 and CR-Dhan 205. The highest grain yield of 2860 kg/ha recorded in rice variety CR-Dhan 203 was significantly superior to that of other varieties except Inglongkiri. In terms of economics, the crop sown on 1st April recorded the highest net return (INR 51755 /ha) and B:C ratio (2.30) which was found to be the greatest.


2017 ◽  
Vol 54 (3) ◽  
pp. 382-398 ◽  
Author(s):  
F.H.C. RUBIANES ◽  
B.P. MALLIKARJUNA SWAMY ◽  
S.E. JOHNSON-BEEBOUT

SUMMARYAs zinc (Zn) fertilizer and water management affect the expression of Zn-enriched grain traits in rice, we studied the effect of Zn fertilizer and water management on Zn uptake and grain yield of different biofortification breeding lines and the possible biases in selection for high grain Zn content. The first field experiment showed that longer duration genotypes had higher grain Zn uptake rate than shorter duration genotypes during grain filling. In the first greenhouse experiment, neither application of Zn fertilizer at mid-tillering nor application at flowering significantly increased the grain Zn concentration. In the second greenhouse experiment, application of alternate wetting and drying (AWD) significantly increased the available soil Zn and plant Zn uptake but not grain Zn concentration. Terminal drying (TD) did not increase the available soil Zn or grain Zn contents. The second field experiment confirmed that differences in TD were not important in understanding differences between genotypes. Zn application is not always necessary to breeding trials unless there is a severe Zn deficiency and there is no need to carefully regulate TD prior to harvest.


Sign in / Sign up

Export Citation Format

Share Document