scholarly journals Building Stability On Permafrost In Vorkuta, Russia

Author(s):  
P. I. Kotov ◽  
V. Z. Khilimonyuk

The Infrastructure stability on permafrost is currently an important topic as the Arctic countries are developing climate change adaptation and mitigation programs. Assessing the sustainability of infrastructure facilities (especially in urban environments) is a difficult task as it depends on many parameters. This article discusses the city of Vorkuta, which is located in the northwest of Russia. This city differs from many others built on permafrost because most of buildings were built according to Principle II (The Active Method) of construction on permafrost with thawing soil prior to construction. Assessments of the engineering and geocryological conditions, basic principles of construction in the city, and reasons for building failures, were carried out within this study. The research is based on publications, open data about buildings, and visual observations in Vorkuta. About 800 buildings are in use in Vorkuta in 2020 (43% of what it was 50 years ago). According to the analysis, about 800 houses have been demolished or disconnected from utility lines over the past 50 years (about 250 of these are still standing, pending demolition). Since 1994, the construction of new residential buildings has almost stopped. Therefore, buildings that have been in use for over 50 years will account for 90% of the total residential housing stock by 2040. The effects of climate change in the city will depend primarily on the principle of construction employed and on the geocryological conditions of the district. Buildings constructed according to Principle I (The Passive Method) were found to be more vulnerable due to a decrease in permafrost bearing capacity. The impact of increasing air temperature on some of the buildings built on bedrock (the central part of the city) and some built on thawing soil will be minimal, as other factors are more significant.

Author(s):  
Nimra Kanwal ◽  
Nuhzat Khan

Buildings are the most important part of development activities, consumed over one-thirds of the global energy. Household used the maximum energy around the world, likewise in Pakistan residential buildings consumed about half of total energy (45.9% per year). The study aims to analyze the impact of building design on climate of Metropolitan City Karachi, Pakistan and to evaluate the change in urbanization patterns and energy consumption in the buildings. To have better understanding of the issues correlations was established amongst population, urbanization patterns, green area, number of buildings (residential and commercial), building design, energy consumption and metrological records (climate change parameters) by collecting the data from the respective departments. With the help of the collected data amount of carbon dioxide was estimated. The results reveled that during last 36 years the urban population of Karachi increased exponentially from 5,208,000 (1981) to 14,737,257 (2017) with increase in urbanized area from 8.35 km2 (1946) to 3,640 km2 (2017) that may led to reduce the green area of the city from 495,000 hectors (1971) to 100,000 hectors (2015). Moreover, the building’s design and numbers are being changed from 21 high-rise buildings (2009) to 344 (2017). It may be concluded that change in temperature pattern and climatic variability of the city may be due to increase in population and change in lifestyle that lead to high energy consumption that is prime source of increased in CO2 emission in the environment of Karachi city, However, Greenhouse Gases (GHG) releases are much lower than the levels reported from metropolitan cities around the world.


1970 ◽  
Vol 14 (3) ◽  
pp. 89-95
Author(s):  
Marek Piróg

The article focuses on the development of housing in Szczawno-Zdroj in the second half of the twentieth century. The image of this place was shaped for centuries as the town and the spa located in this area developed and mainly consisted of facilities associated with health resorts. Based on an analysis of how housing developed in the discussed period, regarding both the shape of buildings and their location on the city plan, the author determines the degree to which new buildings interfere with the existing infrastructure with particular emphasis on their impact on the image of the historical part of the city which is mainly shaped by spa facilities. The study analyzed the impact of residential housing of this period on the traditional cultural landscape of Szczawno-Zdroj.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 648
Author(s):  
Stanislav Myslenkov ◽  
Vladimir Platonov ◽  
Alexander Kislov ◽  
Ksenia Silvestrova ◽  
Igor Medvedev

The recurrence of extreme wind waves in the Kara Sea strongly influences the Arctic climate change. The period 2000–2010 is characterized by significant climate warming, a reduction of the sea ice in the Arctic. The main motivation of this research to assess the impact of climate change on storm activity over the past 39 years in the Kara Sea. The paper presents the analysis of wave climate and storm activity in the Kara Sea based on the results of numerical modeling. A wave model WAVEWATCH III is used to reconstruct wind wave fields for the period from 1979 to 2017. The maximum significant wave height (SWH) for the whole period amounts to 9.9 m. The average long-term SWH for the ice-free period does not exceed 1.3 m. A significant linear trend shows an increase in the storm wave frequency for the period from 1979 to 2017. It is shown that trends in the storm activity of the Kara Sea are primarily regulated by the ice. Analysis of the extreme storm events showed that the Pareto distribution is in the best agreement with the data. However, the extreme events with an SWH more than 6‒7 m deviate from the Pareto distribution.


2021 ◽  
Vol 13 (4) ◽  
pp. 1595
Author(s):  
Valeria Todeschi ◽  
Roberto Boghetti ◽  
Jérôme H. Kämpf ◽  
Guglielmina Mutani

Building energy-use models and tools can simulate and represent the distribution of energy consumption of buildings located in an urban area. The aim of these models is to simulate the energy performance of buildings at multiple temporal and spatial scales, taking into account both the building shape and the surrounding urban context. This paper investigates existing models by simulating the hourly space heating consumption of residential buildings in an urban environment. Existing bottom-up urban-energy models were applied to the city of Fribourg in order to evaluate the accuracy and flexibility of energy simulations. Two common energy-use models—a machine learning model and a GIS-based engineering model—were compared and evaluated against anonymized monitoring data. The study shows that the simulations were quite precise with an annual mean absolute percentage error of 12.8 and 19.3% for the machine learning and the GIS-based engineering model, respectively, on residential buildings built in different periods of construction. Moreover, a sensitivity analysis using the Morris method was carried out on the GIS-based engineering model in order to assess the impact of input variables on space heating consumption and to identify possible optimization opportunities of the existing model.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4084
Author(s):  
Hassan Bazazzadeh ◽  
Peiman Pilechiha ◽  
Adam Nadolny ◽  
Mohammadjavad Mahdavinejad ◽  
Seyedeh sara Hashemi safaei

A substantial share of the building sector in global energy demand has attracted scholars to focus on the energy efficiency of the building sector. The building’s energy consumption has been projected to increase due to mass urbanization, high living comfort standards, and, more importantly, climate change. While climate change has potential impacts on the rate of energy consumption in buildings, several studies have shown that these impacts differ from one region to another. In response, this paper aimed to investigate the impact of climate change on the heating and cooling energy demands of buildings as influential variables in building energy consumption in the city of Poznan, Poland. In this sense, through the statistical downscaling method and considering the most recent Typical Meteorological Year (2004–2018) as the baseline, the future weather data for 2050 and 2080 of the city of Poznan were produced according to the HadCM3 and A2 GHG scenario. These generated files were then used to simulate the energy demands in 16 building prototypes of the ASHRAE 90.1 standard. The results indicate an average increase in cooling load and a decrease in heating load at 135% and 40% , respectively, by 2080. Due to the higher share of heating load, the total thermal load of the buildings decreased within the study period. Therefore, while the total thermal load is currently under the decrease, to avoid its rise in the future, serious measures should be taken to control the increased cooling demand and, consequently, thermal load and GHG emissions.


2021 ◽  
Vol 263 (6) ◽  
pp. 206-214
Author(s):  
David Montes-González ◽  
Juan Miguel Barrigón-Morillas ◽  
Ana Cristina Bejarano-Quintas ◽  
Manuel Parejo-Pizarro ◽  
Guillermo Rey-Gozalo ◽  
...  

The pandemic of coronavirus disease (COVID-19) led to the need for drastic control measures around the world to reduce the impact on the health of the population. The confinement of people in their homes resulted in a significant reduction in human activity at every level (economic, social, industrial, etc.), which was reflected in a decrease in environmental pollution levels. Studying the evolution of parameters, such as the level of environmental noise caused by vehicle traffic in urban environments, makes it possible to assess the impact of this type of measure. This paper presents a case study of the acoustic situation in Cáceres (Spain) during the restriction period by means of long-term acoustic measurements at various points of the city.


2021 ◽  
Author(s):  
Joanna Davies ◽  
Anders Møller Mathiasen ◽  
Kristiane Kristensen ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

<p>The polar regions exhibit some of the most visible signs of climate change globally; annual mass loss from the Greenland Ice Sheet (GrIS) has quadrupled in recent decades, from 51 ± 65 Gt yr<sup>−1</sup> (1992-2001) to 211 ± 37 Gt yr<sup>−1</sup> (2002-2011). This can partly be attributed to the widespread retreat and speed-up of marine-terminating glaciers. The Zachariae Isstrøm (ZI) is an outlet glacier of the Northeast Greenland Ice Steam (NEGIS), one of the largest ice streams of the GrIS (700km), draining approximately 12% of the ice sheet interior. Observations show that the ZI began accelerating in 2000, resulting in the collapse of the floating ice shelf between 2002 and 2003. By 2014, the ice shelf extended over an area of 52km<sup>2</sup>, a 95% decrease in area since 2002, where it extended over 1040km<sup>2</sup>. Paleo-reconstructions provide an opportunity to extend observational records in order to understand the oceanic and climatic processes governing the position of the grounding zone of marine terminating glaciers and the extent of floating ice shelves. Such datasets are thus necessary if we are to constrain the impact of future climate change projections on the Arctic cryosphere.</p><p>A multi-proxy approach, involving grain size, geochemical, foraminiferal and sedimentary analysis was applied to marine sediment core DA17-NG-ST8-92G, collected offshore of the ZI, on  the Northeast Greenland Shelf. The aim was to reconstruct changes in the extent of the ZI and the palaeoceanographic conditions throughout the Early to Mid Holocene (c.a. 12,500-5,000 cal. yrs. BP). Evidence from the analysis of these datasets indicates that whilst there has been no grounded ice at the site over the last 12,500 years, the ice shelf of the ZI extended as a floating ice shelf over the site between 12,500 and 9,200 cal. yrs. BP, with the grounding line further inland from our study site. This was followed by a retreat in the ice shelf extent during the Holocene Thermal Maximum; this was likely to have been governed, in part, by basal melting driven by Atlantic Water (AW) recirculated from Svalbard or from the Arctic Ocean. Evidence from benthic foraminifera suggest that there was a shift from the dominance of AW to Polar Water at around 7,500 cal. yrs. BP, although the ice shelf did not expand again despite of this cooling of subsurface waters.</p>


2014 ◽  
Vol 11 (2) ◽  
pp. 293-308 ◽  
Author(s):  
E. E. Popova ◽  
A. Yool ◽  
Y. Aksenov ◽  
A. C. Coward ◽  
T. R. Anderson

Abstract. The Arctic Ocean is a region that is particularly vulnerable to the impact of ocean acidification driven by rising atmospheric CO2, with potentially negative consequences for calcifying organisms such as coccolithophorids and foraminiferans. In this study, we use an ocean-only general circulation model, with embedded biogeochemistry and a comprehensive description of the ocean carbon cycle, to study the response of pH and saturation states of calcite and aragonite to rising atmospheric pCO2 and changing climate in the Arctic Ocean. Particular attention is paid to the strong regional variability within the Arctic, and, for comparison, simulation results are contrasted with those for the global ocean. Simulations were run to year 2099 using the RCP8.5 (an Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) scenario with the highest concentrations of atmospheric CO2). The separate impacts of the direct increase in atmospheric CO2 and indirect effects via impact of climate change (changing temperature, stratification, primary production and freshwater fluxes) were examined by undertaking two simulations, one with the full system and the other in which atmospheric CO2 was prevented from increasing beyond its preindustrial level (year 1860). Results indicate that the impact of climate change, and spatial heterogeneity thereof, plays a strong role in the declines in pH and carbonate saturation (Ω) seen in the Arctic. The central Arctic, Canadian Arctic Archipelago and Baffin Bay show greatest rates of acidification and Ω decline as a result of melting sea ice. In contrast, areas affected by Atlantic inflow including the Greenland Sea and outer shelves of the Barents, Kara and Laptev seas, had minimal decreases in pH and Ω because diminishing ice cover led to greater vertical mixing and primary production. As a consequence, the projected onset of undersaturation in respect to aragonite is highly variable regionally within the Arctic, occurring during the decade of 2000–2010 in the Siberian shelves and Canadian Arctic Archipelago, but as late as the 2080s in the Barents and Norwegian seas. We conclude that, for future projections of acidification and carbonate saturation state in the Arctic, regional variability is significant and needs to be adequately resolved, with particular emphasis on reliable projections of the rates of retreat of the sea ice, which are a major source of uncertainty.


2020 ◽  
Vol 66 (Suppl.) ◽  
pp. 21-36
Author(s):  
Simone Fattorini ◽  
Cristina Mantoni ◽  
Davide Bergamaschi ◽  
Lorenzo Fortini ◽  
Francisco J. Sánchez ◽  
...  

Several works have investigated the impact of urbanisation on carabid activity density using urban-rural gradients. Such works compared activity density recorded from green spaces located in different parts of a city and assigned to categories of increasing urban intensity, which poses two problems: (1) since the gradient is divided into categories, it is impossible to model continuous variations in biotic responses, and (2) sites representative of different urbanisation levels are not true segments of the same ecological continuum. To surpass these problems, we modelled variations in carabid activity density along an urban-rural transect within a single green space extending from the city centre of Rome to rural environments. Carabids were sampled by pitfall traps from sites distributed along the entire gradient. We used breakpoint regressions to model how (1) carabid activity density, (2) carabids/beetles ratio, (3) carabids/insects ratio and (3) carabids/arthropods ratio varied along the gradient. As already observed for various organisms in urban environments, we found that activity density of carabids and their contribution to the abundance of beetles, insects and arthropods, peaked in the middle of the gradient. This supports the intermediate disturbance hypothesis, according to which moderate urbanisation may favour diversity by increasing habitat heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document